题目内容

【题目】如图1,我们把对角线互相垂直的四边形叫做垂美四边形.

(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由.
(2)性质探究:试探索垂美四边形ABCD两组对边AB,CD与BC,AD之间的数量关系.
猜想结论:(要求用文字语言叙
写出证明过程(先画出图形,写出已知、求证).
(3)问题解决:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE,BG,GE,已知AC=4,AB=5,求GE长.

【答案】
(1)

解:四边形ABCD是垂美四边形.

证明:∵AB=AD,

∴点A在线段BD的垂直平分线上,

∵CB=CD,

∴点C在线段BD的垂直平分线上,

∴直线AC是线段BD的垂直平分线,

∴AC⊥BD,即四边形ABCD是垂美四边形;


(2)

垂美四边形两组对边的平方和相等

解:如图2,已知四边形ABCD中,AC⊥BD,垂足为E,

求证:AD2+BC2=AB2+CD2

证明:∵AC⊥BD,

∴∠AED=∠AEB=∠BEC=∠CED=90°,

由勾股定理得,AD2+BC2=AE2+DE2+BE2+CE2

AB2+CD2=AE2+BE2+CE2+DE2

∴AD2+BC2=AB2+CD2


(3)

解:连接CG、BE,

∵∠CAG=∠BAE=90°,

∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,

在△GAB和△CAE中,

∴△GAB≌△CAE,

∴∠ABG=∠AEC,又∠AEC+∠AME=90°,

∴∠ABG+∠AME=90°,即CE⊥BG,

∴四边形CGEB是垂美四边形,

由(2)得,CG2+BE2=CB2+GE2

∵AC=4,AB=5,

∴BC=3,CG=4 ,BE=5

∴GE2=CG2+BE2﹣CB2=73,

∴GE=


【解析】解:(2)猜想结论:垂美四边形的两组对边的平方和相等.
(1)根据垂直平分线的判定定理证明即可;(2)根据垂直的定义和勾股定理解答即可;(3)根据垂美四边形的性质、勾股定理、结合(2)的结论计算.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网