题目内容
【题目】在△ABC中,AB=6,AC=8,BC=10,D是△ABC内部或BC边上的一个动点(与B、C不重合),以D为顶点作△DEF,使△DEF∽△ABC(相似比k>1),EF∥BC.
(1)求∠D的度数;
(2)若两三角形重叠部分的形状始终是四边形AGDH.
①如图1,连接GH、AD,当GH⊥AD时,请判断四边形AGDH的形状,并证明;
②当四边形AGDH的面积最大时,过A作AP⊥EF于P,且AP=AD,求k的值.
【答案】(1)90°;(2)①四边形AGDH为正方形,理由详见解析;②k=.
【解析】
试题分析:(1)根据已知条件,由勾股定理的逆定理判定△ABC是直角三角形,即可证得结论;(2)①先判断AB∥DE,DF∥AC,得到平行四边形,再判断出是正方形;②先判断面积最大时点D的位置,由△BGD∽△BAC,找出AH=8﹣GA,得到S矩形AGDH=﹣AG2+8AG,确定极值,AG=3时,面积最大,最后求k得值.
试题解析:(1)∵AB2+AC2=100=BC2,
∴∠BAC=90°,
∵△DEF∽△ABC,
∴∠D=∠BAC=90°,
(2)①四边形AGDH为正方形,
理由:如图1,
延长ED交BC于M,延长FD交BC于N,
∵△DEF∽△ABC,
∴∠B=∠C,
∵EF∥BC,
∴∠E=∠EMC,
∴∠B=∠EMC,
∴AB∥DE,
同理:DF∥AC,
∴四边形AGDH为平行四边形,
∵∠D=90°,
∴四边形AGDH为矩形,
∵GH⊥AD,
∴四边形AGDH为正方形;
②当点D在△ABC内部时,四边形AGDH的面积不可能最大,
理由:如图2,
点D在内部时(N在△ABC内部或BC边上),延长GD至N,过N作NM⊥AC于M,
∴矩形GNMA面积大于矩形AGDH,
∴点D在△ABC内部时,四边形AGDH的面积不可能最大,
只有点D在BC边上时,面积才有可能最大,
如图3,
点D在BC上,
∵DG∥AC,
∴△BGD∽△BAC,
∴,
∴,
∴,
∴AH=8﹣GA,
S矩形AGDH=AG×AH=AG×(8﹣AG)=﹣AG2+8AG,
当AG=﹣=3时,S矩形AGDH最大,此时,DG=AH=4,
即:当AG=3,AH=4时,S矩形AGDH最大,
在Rt△BGD中,BD=5,
∴DC=BC﹣BD=5,
即:点D为BC的中点,
∵AD=BC=5,
∴PA=AD=5,
延长PA,∵EF∥BC,QP⊥EF,
∴QP⊥BC,
∴PQ是EF,BC之间的距离,
∴D是EF的距离为PQ的长,
在△ABC中,AB×AC=BC×AQ
∴AQ=4.8
∵△DEF∽△ABC,
∴k=.