题目内容
【题目】如图,已知在平行四边形ABCD中,AE⊥BC,垂足为点E,AF⊥CD,垂足为点F.
(1)如果AB=AD,求证:EF∥BD
(2)如果EF∥BD,求证:AB=AD.
【答案】(1)见解析;(2)见解析
【解析】
(1)直接利用平行四边形的性质结合全等三角形的判定方法得出△ABE≌△ADF(AAS),进而求出答案;
(2)利用平行线分线段成比例定理结合相似三角形的判定与性质得出△ABE∽△ADF,进而求出答案.
(1)∵四边形ABCD是平行四边形,
∴∠ABE=∠ADF,BC=AD,AB=CD,
∵AB=AD,
∴BC=AD=AB=CD,
∵AEBC,AFCD,
∴∠AEB=∠AFD=90,
∵AB=AD,
∴△ABE≌△ADF(AAS),
∴BE=DF,
∴,
∴,
∴EF∥BD.
(2)∵四边形ABCD是平行四边形,
∴∠ABE=∠ADF,
∵AEBC,AFCD,
∴∠AEB=∠AFD=90,
∴△ABE∽△ADF,
∴,
∵EF∥BD,
∴,
∵四边形ABCD是平行四边形,
∴AB=CD,AD=BC,
∴,
∴,
∴,即,
∴AB=AD.
【题目】某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系.关于销售单价,日销售量,日销售利润的几组对应值如下表:
销售单价x(元) | 85 | 95 | 105 | 115 |
日销售量y(个) | 175 | 125 | 75 | m |
日销售利润w(元) | 875 | 1875 | 1875 | 875 |
(注:日销售利润=日销售量×(销售单价﹣成本单价))
(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;
(2)根据以上信息,填空:
该产品的成本单价是 元,当销售单价x= 元时,日销售利润w最大,最大值是 元;
(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?