题目内容
【题目】如果顺次连接一个四边形各边的中点,得到的新四边形是矩形,则原四边形一定是( )
A.平行四边形B.矩形
C.对角线互相垂直的四边形D.对角线相等的四边形
【答案】C
【解析】
此题要根据矩形的性质和三角形中位线定理求解;首先根据三角形中位线定理知:所得四边形的对边都平行且相等,那么其必为平行四边形,若所得四边形是矩形,那么邻边互相垂直,故原四边形的对角线必互相垂直,由此得解.
解:已知:如图,四边形EFGH是矩形,且E、F、G、H分别是AB、BC、CD、AD的中点,求证:四边形ABCD是对角线垂直的四边形.
证明:由于E、F、G、H分别是AB、BC、CD、AD的中点,
根据三角形中位线定理得:EH∥FG∥BD,EF∥AC∥HG;
∵四边形EFGH是矩形,即EF⊥FG,
∴AC⊥BD.
故选:C.
练习册系列答案
相关题目