题目内容
(2012•遵义)为了促进节能减排,倡导节约用电,某市将实行居民生活用电阶梯电价方案,图中折线反映了每户每月用电电费y(元)与用电量x(度)间的函数关系式.
(1)根据图象,阶梯电价方案分为三个档次,填写下表:
(2)小明家某月用电120度,需交电费
(3)求第二档每月电费y(元)与用电量x(度)之间的函数关系式;
(4)在每月用电量超过230度时,每多用1度电要比第二档多付电费m元,小刚家某月用电290度,交电费153元,求m的值.
(1)根据图象,阶梯电价方案分为三个档次,填写下表:
档次 | 第一档 | 第二档 | 第三档 |
每月用电量x(度) | 0<x≤140 | 140<x≤230 140<x≤230 |
x>230 x>230 |
54
54
元;(3)求第二档每月电费y(元)与用电量x(度)之间的函数关系式;
(4)在每月用电量超过230度时,每多用1度电要比第二档多付电费m元,小刚家某月用电290度,交电费153元,求m的值.
分析:(1)利用函数图象可以得出,阶梯电价方案分为三个档次,利用横坐标可得出:第二档,第三档中x的取值范围;
(2)根据第一档范围是:0<x≤140,利用图象上点的坐标得出解析式,进而得出x=120时,求出y的值;
(3)设第二档每月电费y(元)与用电量x(度)之间的函数关系式为:y=ax+c,将(140,63),(230,108)代入得出即可;
(4)分别求出第二、三档每度电的费用,进而得出m的值即可.
(2)根据第一档范围是:0<x≤140,利用图象上点的坐标得出解析式,进而得出x=120时,求出y的值;
(3)设第二档每月电费y(元)与用电量x(度)之间的函数关系式为:y=ax+c,将(140,63),(230,108)代入得出即可;
(4)分别求出第二、三档每度电的费用,进而得出m的值即可.
解答:解:(1)利用函数图象可以得出,阶梯电价方案分为三个档次,利用横坐标可得出:
第二档:140<x≤230,第三档x>230;
(2)根据第一档范围是:0<x≤140,
根据图象上点的坐标得出:设解析式为:y=kx,将(140,63)代入得出:k=
=0.45,
故y=0.45x,
当x=120,y=0.45×120=54(元),
故答案为:54;
(3)设第二档每月电费y(元)与用电量x(度)之间的函数关系式为:y=ax+c,
将(140,63),(230,108)代入得出:
,
解得:
,
则第二档每月电费y(元)与用电量x(度)之间的函数关系式为:y=
x-7(140<x≤230);
(4)根据图象可得出:用电230度,需要付费108元,用电140度,需要付费63元,
故,108-63=45(元),230-140=90(度),
45÷90=0.5(元),
则第二档电费为0.5元/度;
∵小刚家某月用电290度,交电费153元,
290-230=60(度),153-108=45(元),
45÷60=0.75(元),
m=0.75-0.5=0.25,
答:m的值为0.25.
第二档:140<x≤230,第三档x>230;
(2)根据第一档范围是:0<x≤140,
根据图象上点的坐标得出:设解析式为:y=kx,将(140,63)代入得出:k=
63 |
140 |
故y=0.45x,
当x=120,y=0.45×120=54(元),
故答案为:54;
(3)设第二档每月电费y(元)与用电量x(度)之间的函数关系式为:y=ax+c,
将(140,63),(230,108)代入得出:
|
解得:
|
则第二档每月电费y(元)与用电量x(度)之间的函数关系式为:y=
1 |
2 |
(4)根据图象可得出:用电230度,需要付费108元,用电140度,需要付费63元,
故,108-63=45(元),230-140=90(度),
45÷90=0.5(元),
则第二档电费为0.5元/度;
∵小刚家某月用电290度,交电费153元,
290-230=60(度),153-108=45(元),
45÷60=0.75(元),
m=0.75-0.5=0.25,
答:m的值为0.25.
点评:此题主要考查了一次函数的应用以及待定系数法求一次函数解析式,利用图象获取正确信息是解题关键.
练习册系列答案
相关题目