题目内容
【题目】如图,在△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,CD=5cm,求AB的长.
【答案】10cm
【解析】
先有∠A=30°,那么∠ABC=60°,结合BD是角平分线,那么可求出∠DBC=∠ABD=30°,在Rt△DBC中,利用直角三角形中30°的角所对的直角边等于斜边的一半,可求出BD,再利用勾股定理可求BC,同理,在Rt△ABC中,AB=2BC,即可求AB.
解:在Rt△ABC中,∠C=90°,∠A=∠30°,
∴∠ABC=60°.
∵BD是∠ABC的平分线,
∴∠ABD=∠CBD=30°.
∴∠ABD=∠BAD,
∴AD=DB,
在Rt△CBD中,CD=5cm,∠CBD=30°,
∴BD=10cm.
由勾股定理得,BC=5,
∴AB=2BC=10cm.
练习册系列答案
相关题目