题目内容
【题目】如图,已知抛物线y=x2-x-3与x轴的交点为A、D(A在D的右侧),与y轴的交点为C.
(1)直接写出A、D、C三点的坐标;
(2)若点M在抛物线上,使得△MAD的面积与△CAD的面积相等,求点M的坐标;
(3)设点C关于抛物线对称轴的对称点为B,在抛物线上是否存在点P,使得以A、B、C、P四点为顶点的四边形为梯形?若存在,请求出点P的坐标;若不存在,请说明理由.
【答案】(1)A点坐标为(4,0),D点坐标为(-2,0),C点坐标为(0,-3);
(2)M点坐标为(2,-3)或(1+,3)或(1-,3);
(3)在抛物线上存在一点P,使得以点A、B、C、P四点为顶点所构成的四边形为梯形;点P的坐标为(-2,0)或(6,6).
【解析】试题分析:(1)在中令,解得,
∴A(4,0) 、D(-2,0).
在中令,得,∴C(0,-3).
(2)连接AC,根据轴对称的性质,AC与抛物线的对称轴交点M即为所求,从而应用待定系数法求出AC的解析式,再求出抛物线的对称轴,即可求得点M的坐标.
(3)分BC为梯形的底边和BC为梯形的腰两种情况讨论即可.
试题解析:(1)A(4,0) 、D(-2,0)、C(0,-3)
(2)如图,连接AC,则AC与抛物线的对称轴交点M即为所求.
设直线AC的解析式为,则,解得.
∴直线AC的解析式为.
∵的对称轴是直线,
把x=1代入得
`∴M(1, ).
(3)存在,分两种情况:
①如图,当BC为梯形的底边时,点P与D重合时,四边形ADCB是梯形,此时点P为(-2,0).
②如图,当BC为梯形的腰时,过点C作CP//AB,与抛物线交于点P,
∵点C,B关于抛物线对称,∴B(2,-3)
设直线AB的解析式为,则,解得.
∴直线AB的解析式为.
∵CP//AB,∴可设直线CP的解析式为.
∵点C在直线CP上,∴.
∴直线CP的解析式为.
联立,解得,
∴P(6,6).
综上所述,在抛物线上存在点P,使得以A、B、C、P四点为顶点的四边形为梯形,点P的坐标为(-2,0)或(6,6).
【题目】某商场出售一批进价为2元的贺卡,在市场营销中发现此商品的日销售单价x(元)与日销售量y(个)之间有如下关系:
日销售单价x(元) | 3 | 4 | 5 | 6 |
日销售量y(个) | 20 | 15 | 12 | 10 |
(1)猜测并确定y与x之间的函数关系式,并画出图象;
(2)设经营此贺卡的销售利润为W元,求出W与x之间的函数关系式,
(3)若物价局规定此贺卡的售价最高不能超过10元/个,请你求出当日销售单价x定为多少时,才能获得最大日销售利润?最大利润是多少元?
【题目】根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从4月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表:
一户居民一个月用电量的范围 | 电费价格(单位:元/度) |
不超过150度 | |
超过150度的部分 |
今年5月份,该市居民甲用电100度,交电费60元;居民乙用电200度,交电费122.5元.
(1)上表中, , ;
(2)试行“阶梯电价”收费以后,该市一户居民今年8月份平均电价每度为0.63元,求该用户8月用电多少度?