题目内容
【题目】若△ABC绕点A逆时针旋转α后,与△ADE构成位似图形,则我们称△ABC与△ADE互为“旋转位似图形”.
(1)知识理解:
如图1,△ABC与△ADE互为“旋转位似图形”.
①若α=25°,∠D=100°,∠C=28°,则∠BAE= ;
②若AD=6,DE=7,AB=4,则BC=
(2)知识运用:
如图2,在四边形ABCD中,∠ADC=90°,AE⊥BD于点E,∠DAC=∠DBC,求证:△ACD与△ABE互为“旋转位似图形”.
(3)拓展提高:
如图3,△ABG为等边三角形,点C为AG的中点,点F是AB边上的一点,点D为CF延长线上的一点,点E在线段CF上,且△ABD与△ACE互为“旋转位似图形”.若AB=6,AD=4,求的值.
【答案】(1)①27°;②;(2)见解析; (3).
【解析】
(1)①依据△ABC和△ADE互为“旋转位似图形”,可得△ABC∽△ADE,依据相似三角形的对应角相等,即可得到∠BAE=180°﹣100°﹣28°﹣25°=27°;
②依据△ABC∽△ADE,可得,根据AD=6,DE=7,AB=4,即可得出BC=;
(2)依据△AOD∽△BOC,即可得到,进而得到△AOB∽△DOC,再根据∠7=∠8,∠ADC=∠AEB,即可得到△ABE∽△ACD,进而得出△ACD和△ABE互为“旋转位似图形”;
(3)利用三角函数和勾股定理解答即可.
(1)①∵△ABC和△ADE互为“旋转位似图形”,
∴△ABC∽△ADE,
∴∠D=∠B=100°,
又∵α=25°,∠E=28°,
∴∠BAE=180°﹣100°﹣25°﹣28°=27°;
②∵△ABC∽△ADE,
∴,
∵AD=6,DE=7,AB=4,
∴,
∴BC=,
故答案为:27°;;
(2)∵∠DOA=∠COB,∠DAC=∠DBC,
∴△DOA∽△COB,
∴,即,
又∵∠DOC=∠AOB,
∴△AOB∽△DOC,
∴∠DCA=∠EBA,
又∵∠ADC=90°,AE⊥BD,
∴∠ADC=∠AEB=90°,
∴△ABE∽△ACD,
∴∠DAC=∠EAB,
∴△AEB绕点A逆时针旋转∠DAE的度数后与△ADC构成位似图形,
∴△ACD和△ABE互为“旋转位似图形”;
(3)∵AC=AG=AB=3,
由题意得:,
∵AD=4,
∴AE=2,
∵∠DAE=∠FAC=60°,
∴cos∠DAE=cos60°=,
∴∠DEA=90°,
∴由勾股定理可得CE=,
∴DE=AEtan∠DAE=2,
∴.