题目内容

【题目】如图,抛物线y=ax2+2ax+1与x轴仅有一个公共点A,经过点A的直线交该抛物线于点B,交y轴于点C,且点C是线段AB的中点.

(1)求这条抛物线对应的函数解析式;
(2)求直线AB对应的函数解析式.

【答案】
(1)

解:∵抛物线y=ax2+2ax+1与x轴仅有一个公共点A,

∴△=4a2﹣4a=0,解得a1=0(舍去),a2=1,

∴抛物线解析式为y=x2+2x+1;


(2)

解:∵y=(x+1)2

∴顶点A的坐标为(﹣1,0),

∵点C是线段AB的中点,

即点A与点B关于C点对称,

∴B点的横坐标为1,

当x=1时,y=x2+2x+1=1+2+1=4,则B(1,4),

设直线AB的解析式为y=kx+b,

把A(﹣1,0),B(1,4)代入得 ,解得

∴直线AB的解析式为y=2x+2


【解析】(1)利用△=b2﹣4ac=0时,抛物线与x轴有1个交点得到4a2﹣4a=0,然后解关于a的方程求出a,即可得到抛物线解析式;(2)利用点C是线段AB的中点可判断点A与点B的横坐标互为相反数,则可以利用抛物线解析式确定B点坐标,然后利用待定系数法求直线AB的解析式.本题考查了抛物线与x轴的交点:对于二次函数y=ax2+bx+c(a,b,c是常数,a≠0),△=b2﹣4ac决定抛物线与x轴的交点个数:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.也考查了利用待定系数法求函数解析式.
【考点精析】利用确定一次函数的表达式和抛物线与坐标轴的交点对题目进行判断即可得到答案,需要熟知确定一个一次函数,需要确定一次函数定义式y=kx+b(k不等于0)中的常数k和b.解这类问题的一般方法是待定系数法;一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网