题目内容
【题目】如图,lA、lB分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系.
(1)B出发时与A相距_____千米.
(2)走了一段路后,自行车发生故障进行修理,所用的时间是____小时.
(3)B出发后_____小时与A相遇.
(4)求出A行走的路程S与时间t的函数关系式.(写出计算过程)
(5)请通过计算说明:若B的自行车不发生故障,保持出发时的速度前进,何时与A相遇?
【答案】(1)10;(2)1;(3)3小时时与A相遇;(4)A行走的路程S与时间t的函数关系式是:;(5)若B的自行车不发生故障,保持出发时的速度前进,1小时时与A相遇
【解析】
(1)根据函数图象可知,B出发时与A相距10千米;(2)根据函数图象可知,走了一段路后,自行车发生故障进行修理,所用的时间是(1.5﹣0.5)小时; (3)根据图象可知B出发后3小时时与A相遇;(4)根据函数图象可知直线lA经过点(0,10),(3,25).用待定系数法求解析式;(5)先求直线lB的解析式,再解可得结果.
(1)根据函数图象可知,B出发时与A相距10千米,
故答案为:10;·
(2)根据函数图象可知,走了一段路后,自行车发生故障进行修理,所用的时间是1.5﹣0.5=1小时,
故答案为:1;
(3)根据图象可知B出发后3小时时与A相遇;
(4)根据函数图象可知直线lA经过点(0,10),(3,25).
设直线lA的解析式为:S=kt+b,则
解得,k=5,b=10
即A行走的路程S与时间t的函数关系式是:S=5t+10;·
(5)设直线lB的解析式为:S=kt,
∵点(0.5,7.5)在直线lB上,
∴7.5=k×0.5
得k=15
∴S=15t.
∴
解得S=15,t=1.·
故若B的自行车不发生故障,保持出发时的速度前进,1小时时与A相遇.