题目内容
【题目】如图,矩形ABCD中,O是AC与BD的交点,过O点的直线EF与AB,CD的延长线分别交于E,F.
(1)求证:△BOE≌△DOF;
(2)当EF与AC满足什么关系时,以A,E,C,F为顶点的四边形是菱形?证明你的结论.
【答案】
(1)证明:∵四边形ABCD是矩形,
∴OB=OD(矩形的对角线互相平分),
AE∥CF(矩形的对边平行).
∴∠E=∠F,∠OBE=∠ODF.
∴△BOE≌△DOF(AAS)
(2)解:当EF⊥AC时,四边形AECF是菱形.
证明:∵四边形ABCD是矩形,
∴OA=OC(矩形的对角线互相平分).
又∵由(1)△BOE≌△DOF得,OE=OF,
∴四边形AECF是平行四边形(对角线互相平分的四边形是平行四边形)
又∵EF⊥AC,
∴四边形AECF是菱形(对角线互相垂直的平行四边形是菱形)
【解析】(1)由矩形的性质:OB=OD,AE∥CF证得△BOE≌△DOF;(2)若四边形EBFD是菱形,则对角线互相垂直,因而可添加条件:EF⊥AC, 当EF⊥AC时,∠EOA=∠FOC=90°,
∵AE∥FC,
∴∠EAO=∠FCO,矩形对角线的交点为O,
∴OA=OC,
∴△AOE≌△COF,
∴OE=OF,根据对角线互相垂直平分的四边形是菱形.
∴四边形EBFD是菱形.
【题目】某市某校准备组织教师、学生、家长到曲阜进行参观学习活动,旅行社代办购买动车票,动车票价格如下表所示:
运行区间 | 大人票价 | 学生票价 | ||
出发站 | 终点站 | 一等座 | 二等座 | 二等座 |
济南 | 曲阜 | 65(元) | 54(元) | 40(元) |
根据报名总人数,若所有人员都买一等座的动车票,则共需13 650元;若都买二等座的动车票(学生全部按表中的“学生票二等座”购买),则共需8 820元.已知家长的人数是教师的人数的2倍.
(1)请求出参加活动的教师和学生各有多少人?
(2)如果二等座动车票共买到m张,且学生全部按表中的“学生票二等座”购买,其余的买一等座动车票,且买票的总费用不低于9 000元,求m的最大值.