题目内容
若x1、x2是一元二次方程x2+2x-3=0的二个根,则x1•x2的值是( )A.2
B.-2
C.3
D.-3
【答案】分析:由x1、x2是一元二次方程x2+2x-3=0的二个根,根据根与系数的关系,即可求得x1•x2的值.
解答:解:∵x1、x2是一元二次方程x2+2x-3=0的二个根,
∴x1•x2=-3.
故选D.
点评:此题考查了根与系数的关系.此题比较简单,注意掌握根与系数的关系:若一元二次方程x2+px+q=0的两个根分别是x1、x2,则x1+x2=-p,x1•x2=q.
解答:解:∵x1、x2是一元二次方程x2+2x-3=0的二个根,
∴x1•x2=-3.
故选D.
点评:此题考查了根与系数的关系.此题比较简单,注意掌握根与系数的关系:若一元二次方程x2+px+q=0的两个根分别是x1、x2,则x1+x2=-p,x1•x2=q.
练习册系列答案
相关题目