题目内容
【题目】若关于x的一元二次方程(x-2)(x-3)=m有实数根x1、x2,且x1≠x2,有下列结论:
①x1=2,x2=3;②m>-;③二次函数y=(x-x1)(x-x2)+m的图象与x轴交点的坐标为(2,0)和(3,0).
其中,正确结论的个数是( )
A.0 B.1 C.2 D.3
【答案】C.
【解析】
试题解析:一元二次方程(x-2)(x-3)=m化为一般形式得:x2-5x+6-m=0,
∵方程有两个不相等的实数根x1、x2,
∴b2-4ac=(-5)2-4(6-m)=4m+1>0,
解得:m>-,故选项②正确;
∵一元二次方程实数根分别为x1、x2,
∴x1+x2=5,x1x2=6-m,
而选项①中x1=2,x2=3,只有在m=0时才能成立,故选项①错误;
二次函数y=(x-x1)(x-x2)+m=x2-(x1+x2)x+x1x2+m=x2-5x+(6-m)+m=x2-5x+6=(x-2)(x-3),
令y=0,可得(x-2)(x-3)=0,
解得:x=2或3,
∴抛物线与x轴的交点为(2,0)或(3,0),故选项③正确.
综上所述,正确的结论有2个:②③.
故选C.
练习册系列答案
相关题目