题目内容
【题目】如图,AB是⊙O的直径,C是⊙O上的一点,直线MN经过点C,过点A作直线MN的垂线,垂足为点D,且∠BAC=∠CAD.
(1)求证:直线MN是⊙O的切线;
(2)若CD=3,∠CAD=30°,求⊙O的半径.
【答案】(1)证明见解析;(2)2.
【解析】
试题分析:(1)连接OC,易证∠OCA=∠OAC=∠CAD,从而OC∥AD,推出OC⊥MN,可得出直线MN是⊙O的切线;(2)由条件在Rt△ADC中,可求得AD、AC的长,易证△ADC∽△ACB,利用对应边成比例求出AB的长,半径即可求出.
试题解析: (1)证明:连接OC,∵OA=OC,∴∠BAC=∠ACO.∵AC平分∠BAD,∴∠BAC=∠CAD,∴∠ACO=∠CAD.∽OC∥AD,又∵AD丄MN,∴OC丄MN,∴直线MN是⊙O的切线;(2)解:∵AB是⊙O的直径,∴∠ACB=90°.∵AD丄MN,∴∠ADC=90°.∵CD=3,∠CAD=30°,∴AD=6,.∵∠BAC=∠CAD,∠ACB=∠ADC,∴△ABC∽△ACD,∴=,
∴,AB=4,∴⊙O的半径为2.
练习册系列答案
相关题目