题目内容

细心观察图形,认真分析各式,然后解答问题:
12+1=2,S1=
1
2
(
2
)2
+1=3,S2=
2
2
(
3
)2
+1=4,S3=
3
2

(1)请用含有n(n为正整数)的等式表示上述变化规律.
(2)推算出OA10的长.
(3)求出S12+S22+S32+…+S1002的值.
分析:(1)利用已知可得OAn2,注意观察数据的变化,
(2)结合(1)中规律即可求出OA102的值即可求出,
(3)将前10个三角形面积相加,利用数据的特殊性即可求出.
解答:解:(1)结合已知数据,可得:OAn2=n;Sn=
n
2


(2)∵OAn2=n,
∴OA10=
10


(3)S
 
2
1
+S
 
2
2
+S
 
2
3
+…+S
 
2
100

=
1
4
+
2
4
+
3
4
+…+
100
4

=
1+2+3+4+…+100
4

=
5050
4
=
2025
2
点评:本题主要考查勾股定理以及作图的知识点,解答本题的关键是熟练掌握勾股定理的知识,此题难度不大.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网