题目内容
【题目】如图1,OA=1,OB=3,以A为直角顶点,AB为腰在第三象限作等腰Rt△ABC.
(1)求点C的坐标;
(2)如图2,P为y轴负半轴上的一个动点,当点P向下运动时,以P点为直角顶点,PA为腰作等腰Rt△APD,过D作DE⊥x轴于E点,求PO-DE的值.
【答案】见解析
【解析】分析】(1)如图1,过C作CD⊥x轴于D.构建全等三角形:△CDA≌△AOB(AAS),则AD=OB=3,CD=OA=1,故OD=4,所以易求C(﹣4,﹣1);
(2)如图2,过点Q作QR⊥y轴于R.则四边形QEOR是矩形,通过证△OPA≌△RQP(AAS),推知OA=PR,则OR=OP﹣PR=OP﹣OA,所以OP﹣OR=OA=1,即OP﹣QE=1,始终保持不变.
试题解析:解:(1)如图,过C作CD⊥x轴于D.
∵∠BAC=90°,∠AOB=90°,∴∠1+∠OAB=∠2+∠OAB=90°,∴∠1=∠2.
在△CDA与△AOB中,∵∠CDA=∠AOB,∠1=∠2,CA=AB,∴△CDA≌△AOB(AAS),
∴AD=OB=3,CD=OA=1,∴OD=4,∴C(﹣4,﹣1);
(2)如图,过点Q作QR⊥y轴于R.
则四边形QEOR是矩形,∴QE=OR.
∵∠APQ=90°,∴∠1+∠QPR=∠2+∠QPR=90°,∴∠1=∠2.
在△APO与△PQR中,∵∠AOP=∠PRQ,∠1=∠2,AP=PQ,∴△OPA≌△RQP(AAS),∴OA=PR,∴OR=OP﹣PR=OP﹣OA,∴OP﹣OR=OA=1,即OP﹣QE=1,始终保持不变.
【题目】计算机中常用的十六进制是逢16进1的记数制,采用数字0~9和字母A~F共16个记数符号,这些符号与十进制的数对应关系如下表:
十六进制 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F | 10 | 11 | 12 | …… |
十进制 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | …… |
例如,用十六进制表示:5+A=F,E+2=10,D+F=1C,则在16进制下,B+E=____.(用十六进制数填)
【题目】某班学生在颁奖大会上得知该班获得奖励的情况如下表:已知该班共有28人获得奖励,其中只获得两项奖励的有13人,那么该班获得奖励最多的一位同学可能获得的奖励为( )
项目 | 三好学生 | 优秀学生干部 | 优秀团员 |
市级 | 3 | 2 | 3 |
校级 | 18 | 6 | 12 |
A.3项
B.4项
C.5项
D.6项