题目内容
【题目】已知a1+a2=1,a2+a3=2,a3+a4=3,…,a99+a100=99,a100+a1=100,那么a1+a2+a3+…a100= 。
【答案】2525
【解析】解:∵a1+a2=1,a2+a3=2,a3+a4=3,…,a99+a100=99,a100+a1=100,
∴a1+a2+a3+…a100= (a1+a2+a2+a3+a3+a4+ , …,a99+a100+a100+a1)
= (1+2+3+…+100)
= ×5050
=2525.
故填:2525.
【考点精析】利用有理数的加法法则对题目进行判断即可得到答案,需要熟知有理数加法法则:1、同号两数相加,取相同的符号,并把绝对值相加2、异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值3、一个数与0相加,仍得这个数.
练习册系列答案
相关题目