题目内容

【题目】已知如图所示,△AOB与△COD关于点O成中心对称,连接BC,AD.

(1)求证:四边形ABCD为平行四边形;

(2)若△AOB的面积为15 cm2,求四边形ABCD的面积.

【答案】(1)证明见解析;(2)60 cm2.

【解析】试题分析:根据成中心对称图形的性质知OA=OC,OB=OD.根据平行四边形对角线互相平分,所以可以得到四边形ABCD为平行四边形;△AOB的面积为15 cm2,则△ABC面积等于△AOB面积的2倍,因为点O为平行四边形的中心,所以△ABC的高等于△AOB高的2倍,所以SABC =30,所以四边形ABCD的面积是60.

(1)∵AOB与△COD关于点O成中心对称,∴OA=OC,OB=OD.

∴四边形ABCD为平行四边形.

(2)四边形ABCD的面积为60 cm2.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网