题目内容
【题目】如图(1),将两块直角三角尺的直角顶点叠放在一起,
(1)若,则______;若,则______;
(2)①猜想与的大小有何特殊关系,并说明理由;
②应用:当的余角的4倍等于时,则是______度
(3)拓展:如图(2),若是两个同样的直角三角尺锐角的顶点重合在一起,则与的大小又有何关系,直接写出结论不必证明.
【答案】(1),;(2)①猜想得(或与互补),理由见解析;②30;(3)
【解析】
(1)本题已知两块直角三角尺实际就是已知三角板的各个角的度数,根据角的和差就可以求出∠ACB,∠DCE的度数;
(2)①根据前两个小问题的结论猜想∠ACB与∠DCE的大小关系,结合前两问的解决思路得出证明;②根据①中的关系式以及的余角的4倍等于列出关于∠DCE的方程,求出∠DCE的度数,最后得出∠BCD的度数即可;
(3)根据(1)(2)解决思路确定∠DAB与∠CAE的大小并证明.
解:(1)∵∠ECB=90°,∠DCE=35°
∴∠DCB=90°-35°=55°
∵∠ACD=90°,
∴∠ACB=∠ACD+∠DCB=145°.
∵∠ACB=140°,
∴∠DCB=∠ACB-∠ACD=140°-90°=50°.
∴∠DCE=∠ECB-∠DCB=90°-50°=40°,
故答案为:145°,40°
(2)①猜想得∠ACB+∠DCE=180°(或∠ACB与∠DCE互补)
理由:∵∠ECB=90°,∠ACD=90°
∴∠ACB=∠ACD+∠DCB=90°+∠DCB
∠DCE=∠ECB-∠DCB=90°-∠DCB
∴∠ACB+∠DCE=180°.
②根据题意得,4(90°-∠DCE)=∠ACB,又由①得,∠ACB=180°-∠DCE,
∴4(90°-∠DCE)=180°-∠DCE,解得∠DCE=60°.
∴∠BCD=90°-∠DCE=30°.
故答案为:30°;
(3)∠DAB+∠CAE=120°.理由如下:
由于∠DAB=∠DAE+∠CAE+∠CAB,
故∠DAB+∠CAE=∠DAE+∠CAE+∠CAB+∠CAE=∠DAC+∠BAE=120°.