题目内容
【题目】旋转变换是解决数学问题中一种重要的思想方法,通过旋转变换可以将分散的条件集中到一起,从而方便解决问题.已知,中,,,点、在边上,且.
(1)如图,当时,将绕点顺时针旋转到的位置,连接,
①求的度数;
②求证:;
(2)如图,当时,猜想、、的数量关系,并说明理由;
(3)如图,当,,时,请直接写出的长为________.
【答案】(1)①,②见解析;(2);见解析,(3).
【解析】
(1)①由旋转得,,,通过求出∠BAD+∠CAE=30°,即可得答案;②通过证明∠DAF=∠DAE,利用SAS即可证明△ADE≌△ADF;(2)如图,将绕点顺时针旋转到的位置,连接根据等腰直角三角形的性质可得∠C=∠ABC=45°,由旋转的性质可得,,即可证明∠DBF=90°,由(1)可知△ADE≌△ADF,可得DF=DE,根据勾股定理即可得答案;(3)如图,将绕点顺时针旋转120°到△AGB的位置,连接,过D作DH⊥BG于H,同(2)可得∠GBD=60°,DG=DE,可得∠BDH=30°,利用含30°角的直角三角形的性质可得BH的长,即可得GH的长,利用勾股定理可得DH的长,在Rt△DHG中,利用勾股定理求出DG的长,进而根据△AGD≌△AEC即可得答案.
(1)①由旋转得,,,
∵
∴
②∵∠DAE=30°,∠DAF=30°,
∴∠DAF=∠DAE
在和中
∴
(2)
如图,将绕点顺时针旋转到的位置,连接
∴,
由(1)得
∴
∵,
∴
∴
∴在中,
∴
(3)如图,将绕点顺时针旋转120°到△AGB的位置,连接过D作DH⊥BG于H,
∴BG=CE=5,∠C=∠ABG,
∵∠BAC=120°,AB=AC,
∴∠C=∠ABC=30°,
∴∠GBD=∠ABG+∠ABC=30°+30°=60°,
∵DH⊥BG,
∴∠BDH=30°,
∴BH=BD=4×=2,DH===2,
∴GH=BG-BH=5-2=3,
由(1)可知△AGD≌△AEC,
∴DG=DE,
在Rt△DHG中,DG===,
∴DE=DG=.
故答案为: