题目内容
【题目】如图,在中,点O是AC边上的一个动点,过点O作直线,设MN交的角平分线于点E,交的外角平分线于点F.
求证:;
当点O运动到何处时,四边形AECF是矩形?请说明理由;
在的条件下,给再添加一个条件,使四边形AECF是正方形,那么添加的条件是______.
【答案】(1)见解析;(2)当点O运动到AC的中点时,四边形AECF是矩形.理由见解析;(3)∠ACB为直角的直角三角形时.
【解析】
(1)由平行线的性质和角平分线的定义得出∠OCE=∠OEC,∠OCF=∠OFC,得出EO=CO,FO=CO,即可得出结论;
(2)先证明四边形AECF是平行四边形,再由对角线相等,即可得出结论;
(3)由正方形的性质得出∠ACE=45°,得出∠ACB=2∠ACE=90°即可.
解:(1)
∵MN∥BC,
∴∠3=∠2,
又∵CF平分∠GCO,
∴∠1=∠2,
∴∠1=∠3,
∴FO=CO,
同理:EO=CO,
∴EO=FO.
(2)当点O运动到AC的中点时,四边形AECF是矩形.
∵当点O运动到AC的中点时,AO=CO,
又∵EO=FO,
∴四边形AECF是平行四边形,
由(1)可知,FO=CO,
∴AO=CO=EO=FO,
∴AO+CO=EO+FO,即AC=EF,
∴四边形AECF是矩形.
(3)当点O运动到AC的中点时,且△ABC满足∠ACB为直角的直角三角形时,四边形AECF是正方形.
∵由(2)知,当点O运动到AC的中点时,四边形AECF是矩形,
∵MN∥BC,
∴∠AOE=∠ACB
∵∠ACB=90°,
∴∠AOE=90°,
∴AC⊥EF,
∴四边形AECF是正方形.
故答案为:∠ACB为直角的直角三角形时.
练习册系列答案
相关题目