题目内容

【题目】感知:如图,在四边形ABCD中,AB∥CD,∠B=90°,点P在BC边上,当APD=90°时,可知△ABP∽△PCD.(不要求证明)

探究:如图,在四边形ABCD中,点P在BC边上,当∠B=∠C=∠APD时,求证:△ABP∽△PCD.

拓展:如图,在ABC中,点P是边BC的中点,点D、E分别在边AB、AC上.若∠B=∠C=∠DPE=45°,BC=6,CE=4,则DE的长为   

【答案】感知:见解析探究:证明见解析;拓展:

【解析】

感知:先判断出,∠BAP=DPC,进而得出结论;

探究:同理根据两角相等相等,两三角形相似,进而得出结论;

拓展:利用相似三角形BDP∽△CPE得出比例式求出BD,三角形内角和定理证得ACABAC=AB;然后在直角ABC中由勾股定理求得AC=AB=6;最后利用在直角ADE中利用勾股定理来求DE的长度.

感知:∵∠APD=90°,

∴∠APB+DPC=90°,

∵∠B=90°,

∴∠APB+BAP=90°,

∴∠BAP=DPC,

ABCD,B=90°,

∴∠C=B=90°,

∴△ABP∽△DCP.

探究:∵∠APC=BAP+B,APC=APD+CPD,

∴∠BAP+B=APD+CPD.

∵∠B=APD,

∴∠BAP=CPD.

∵∠B=C,

ABP∽△PCD,

拓展:同探究的方法得出,BDP∽△CPE,

∵点P是边BC的中点,

BP=CP=3

CE=4,

BD=

∵∠B=C=45°,

∴∠A=180°﹣B﹣C=90°,

ACABAC=AB=6,

AD=AB﹣BD=6﹣=,AE=AC﹣CE=6﹣4=2,

RtADE中,DE=

故答案是:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网