题目内容
【题目】感知:如图①,在四边形ABCD中,AB∥CD,∠B=90°,点P在BC边上,当∠APD=90°时,可知△ABP∽△PCD.(不要求证明)
探究:如图②,在四边形ABCD中,点P在BC边上,当∠B=∠C=∠APD时,求证:△ABP∽△PCD.
拓展:如图③,在△ABC中,点P是边BC的中点,点D、E分别在边AB、AC上.若∠B=∠C=∠DPE=45°,BC=6,CE=4,则DE的长为 .
【答案】感知:见解析;探究:证明见解析;拓展: .
【解析】
感知:先判断出,∠BAP=∠DPC,进而得出结论;
探究:同理根据两角相等相等,两三角形相似,进而得出结论;
拓展:利用相似三角形△BDP∽△CPE得出比例式求出BD,三角形内角和定理证得AC⊥AB且AC=AB;然后在直角△ABC中由勾股定理求得AC=AB=6;最后利用在直角△ADE中利用勾股定理来求DE的长度.
感知:∵∠APD=90°,
∴∠APB+∠DPC=90°,
∵∠B=90°,
∴∠APB+∠BAP=90°,
∴∠BAP=∠DPC,
∵AB∥CD,∠B=90°,
∴∠C=∠B=90°,
∴△ABP∽△DCP.
探究:∵∠APC=∠BAP+∠B,∠APC=∠APD+∠CPD,
∴∠BAP+∠B=∠APD+∠CPD.
∵∠B=∠APD,
∴∠BAP=∠CPD.
∵∠B=∠C,
∴△ABP∽△PCD,
拓展:同探究的方法得出,△BDP∽△CPE,
∴,
∵点P是边BC的中点,
∴BP=CP=3,
∵CE=4,
∴,
∴BD=,
∵∠B=∠C=45°,
∴∠A=180°﹣∠B﹣∠C=90°,
即AC⊥AB且AC=AB=6,
∴AD=AB﹣BD=6﹣=,AE=AC﹣CE=6﹣4=2,
在Rt△ADE中,DE=.
故答案是:.
练习册系列答案
相关题目