题目内容
【题目】探究实验:《钟面上的数字》
实验目的:了解钟面上时针与分针在转动时的内在联系,学会用一元一次方程解决钟面上的有关数学问题,体会数学建模思想.
实验准备:机械钟(手表)一只
实验内容与步骤:
观察与思考:
(1)时针每分钟转动__°,分针每分钟转动__°.
(2)若时间为8:30,则钟面角为__°,(钟面角是时针与分针所成的角)
操作与探究:
(1)转动钟面上的时针与分针,使时针与分针重合在12点处.再次转动钟面上的时针与分针,算一算,什么时刻时针与分针再次重合?一天24小时中,时针与分针重合多少次?(一天中起始时刻和结束时刻时針与分针重合次数只算一次,下同)
(2)转动钟面上的时针与分针,使时针与分针重合在12点处,再次转动钟面上的时针与分针,算一算,什么时刻钟面角第一次为90°?一天24小时中,钟面角为90°多少次?
拓展延伸:
一天24小时中,钟面角为180°__次,钟面角为n°(0<n<180)____次.(直接写出结果)
【答案】观察与思考:(1)0.5,6,(2)75;操作与探究:(1),22;(2)
,44;拓展延伸:22,44.
【解析】解析:
试题分析:观察与思考: (1)钟表12个数字,每相邻两个数字之间的夹角为30°即可得出答案;(2)钟表上8:30,时针指向8和9的中间,分针指向6,即可得出答案,时针和分针相隔2.5个格;
操作与探究: (1)①设经过x小时时针与分针再次重合,根据分针转过的角度=时针转过的角度+360°列出方程即可得出答案;②设经过x小时时针与分针再次重合,根据分针转过的角度=时针转过的角度+90°列出方程即可得出答案;
拓展延伸:根据一天时针与分针重合的次数,结合每重合一次都会出此案两次n的角可得到答案.
解:观察与思考:
(1)30°÷60=0.5;30°÷5=6°;
(2)30°×2.5=75°
操作与探究:
(1)设经过x小时时针与分针再次重合.
360x=30x+360
解得:x=,
∵时针与分针每经过x=重合一次,
∴24÷=22 (次).
答: 时时针与分针再次重合.一天24小时中,时针与分针重合22次.
(2)设经过y小时钟面角第一次为90°.
360y=30y+90,
解得:y=.
∵每经过x=时针与分针重合一次,而钟面角为90°两次.
∴24÷×2=44 (次)
答:12时钟面角第一次为90°.一天24小时中,钟面角为90° 44次.
拓展延伸:
由2可得:一天24小时中,钟面角为180°有22次,钟面角为n°(0<n<180)44次.
故答案为:22;44.
![](http://thumb.zyjl.cn/images/loading.gif)