题目内容
如图,矩形ABCD中,对角线AC的垂直平分线交AD、BC于点E、F,AC与EF交于点O,连结AF、CE.
(1)求证:四边形AFCE是菱形;
(2)若AB=3,AD=4,求菱形AFCE的边长.
如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,O是△ABC的内心,以O为圆心,r为半径的圆与线段AB有公共点,则r的取值范围是_____.
如图,已知AO为Rt△ABC的角平分线,∠ACB=90°,,以O为圆心,OC 为半径的圆分别交AO,BC于点D,E,连接ED并延长交AC于点F.
(1)求证:AB是⊙O的切线;
(2)求的值。
(3)若⊙O的半径为4,求的值.
若一个等腰三角形的两边长分别为和,则这个等腰三角形的周长是为( ).
A. B. C. 或 D. 或
△ABC中,AB=AC=10,BC=12,矩形DEFG中,EF=4,FG>12.
(1)如图①,点A是FG的中点,FG∥BC,将矩形DEFG向下平移,直到DE与BC重合为止.要研究矩形DEFG与△ABC重叠部分的面积,就要进行分类讨论,你认为如何进行分类,写出你的分类方法(无需求重叠部分的面积).
(2)如图②,点B与F重合,E、B、C在同一直线上,将矩形DEFG向右平移,直到点E与C重合为止.设矩形DEFG与△ABC重叠部分的面积为y,平移的距离为x.
① 求y与x的函数关系式,并写出自变量的取值范围;
② 在给定的平面直角坐标系中画出y与x的大致图象,并在图象上标注出关键点坐标.
某剧院举办文艺演出.经调研,如果票价定为每张30 元,那么1200 张门票可以全部售出;如果票价每增加1 元,那么售出的门票就减少20 张.要使门票收入达到38500 元,票价应定为多少元?若设票价为x 元,则可列方程为__________.
使式子1+有意义的x的取值范围是___________.
如图,平面上七个点A、B、C、D、E、F、G,图中所有的连线长均相等,则cos∠BAF=_____.
一个正方形的面积为17,估计它的边长大小在( )
A. 5和6之间 B. 4和5之间 C. 3和4之间 D. 2和3之间