题目内容

【题目】已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,

(1)求证:四边形ADCE为矩形;

(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.

【答案】(1)证明见解析(2)当ABC满足BAC=90°时,四边形ADCE是一个正方形.

【解析】试题分析:(1)根据矩形的有三个角是直角的四边形是矩形,已知CE⊥AN,AD⊥BC,所以求证∠DAE=90°,可以证明四边形ADCE为矩形.

(2)根据正方形的判定,我们可以假设当AD=BC,由已知可得,DC=BC,由(1)的结论可知四边形ADCE为矩形,所以证得,四边形ADCE为正方形.

试题解析:(1)证明:在ABC中,AB=AC,AD⊥BC,

∴∠BAD=∠DAC,

AN是ABC外角CAM的平分线,

∴∠MAE=∠CAE,

∴∠DAE=DAC+CAE=×180°=90°,

∵AD⊥BC,CE⊥AN,

∴∠ADC=∠CEA=90°,

四边形ADCE为矩形.

(2)当ABC满足BAC=90°时,四边形ADCE是一个正方形.

理由:∵AB=AC,

∴∠ACB=∠B=45°,

∵AD⊥BC,

∴∠CAD=∠ACD=45°,

∴DC=AD,

四边形ADCE为矩形,

矩形ADCE是正方形.

BAC=90°时,四边形ADCE是一个正方形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网