题目内容
如图,已知平行四边形ABCD中,∠ABC、∠BCD的平分线BE、CF分别交边AD于E、F.求证:AF=ED.
证明:∵四边形ABCD是平行四边形,
∴AB=CD,AD∥BC,
∴∠AEB=∠EBC,
∵BE平分∠ABC,
∴∠ABE=∠CBE,
∴∠ABE=∠AEB,
∴AB=AE,
同理DF=CD,
∴AE=DF,
即AE-EF=DF-EF,
∴AF=DE.
∴AB=CD,AD∥BC,
∴∠AEB=∠EBC,
∵BE平分∠ABC,
∴∠ABE=∠CBE,
∴∠ABE=∠AEB,
∴AB=AE,
同理DF=CD,
∴AE=DF,
即AE-EF=DF-EF,
∴AF=DE.
练习册系列答案
相关题目