题目内容
【题目】如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在边AB上的点D处,已知MN∥AB,MC=6,NC=2,则四边形MABN的面积是___________.
【答案】18
【解析】
如图,连接CD,与MN交于点E,根据折叠的性质可知CD⊥MN,CE=DE.再根据相似三角形的判定可知△MNC∽△ABC,再根据相似三角形的面积之比等于相似比的平方.由图可知四边形ABNM的面积等于△ABC的面积减去△MNC的面积.
解:连接CD,交MN于点E.
∵△ABC沿直线MN翻折后,顶点C恰好落在边AB上的点D处,
∴CD⊥MN,CE=DE.
∵MN∥AB,
∴△MNC∽△ABC, CD⊥AB,
∴=
=
=4.
∵=
MC
CN=
6
2
=6
,
∴=24
,
∴四边形ACNM=-
=24-6
=18
故答案是18.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
【题目】国际上通常用恩格尔系数(记作n)来衡量一个国家和地区人民的生活水平的状况,它的计算公式:n=x/y(x:家庭食品支出总额;y:家庭消费支出总额).各种家庭类型的n如下表:
已知王先生居住地2008年比2003年食品价格上升了25%,该家庭在2008年购买食品和2003年完全相同的情况下多支出2000元,并且y=2x+3600(单位:元),则该家庭2003年属于( )
家庭类型 | 贫困 | 温饱 | 小康 | 富裕 |
n | n>60% | 50%<n≤60% | 40%<n≤50% | 30%<n≤40% |
A. 贫困 B. 温饱 C. 小康 D. 富裕