题目内容
如图,BD是平行四边形ABCD的一条对角线,AE⊥BD于点E,CF⊥BD于点F.
求证:∠DAE=∠BCF.

求证:∠DAE=∠BCF.

证明:∵平行四边形ABCD,
∴AD=BC,AD∥BC,
∴∠ADB=∠CBD,
∵AE⊥BD,CF⊥BD,
∴∠AED=∠CFB=90°,
在△ADE和△CBF中,
,
∴△ADE≌△CBF(AAS),
∴∠DAE=∠BCF.
∴AD=BC,AD∥BC,
∴∠ADB=∠CBD,
∵AE⊥BD,CF⊥BD,
∴∠AED=∠CFB=90°,
在△ADE和△CBF中,
|
∴△ADE≌△CBF(AAS),
∴∠DAE=∠BCF.

练习册系列答案
相关题目