题目内容
【题目】如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.
① 求证:△ABE≌△CBD;
② 若∠CAE=30°,求∠BDC的度数.
【答案】①证明见解析②∠BDC=75°
【解析】试题分析:(1)利用“边角边”证明△ABE≌△CBD即可;②先根据等腰直角三角形的锐角都是45°求出∠CAB,再求出∠BAE,然后根据全等三角形对应角相等求出∠BCD,再根据直角三角形两锐角互余其解即可;
试题解析:
(1)证明:∵∠ABC=90°,D为AB延长线上一点,
∴∠ABE=∠CBD=90°,
在△ABE和△CBD中,
,
∴△ABE≌△CBD(SAS);
(2)∵AB=CB,∠ABC=90°,
∴∠CAB=45°,
∵∠CAE=30°,
∴∠BAE=∠CAB-∠CAE=45°-30°=15°,
∵△ABE≌△CBD,
∴∠BCD=∠BAE=15°,
∴∠BDC=90°-∠BCD=90°-15°=75°;
练习册系列答案
相关题目
【题目】如图,是一种斜挎包,其挎带由双层部分、单层部分和调节扣构成.小敏用后发现,通过调节扣加长或缩短单层部分的长度,可以使挎带的长度(单层部分与双层部分长度的和,其中调节扣所占的长度忽略不计)加长或缩短.设单层部分的长度为cm,双层部分的长度为cm,经测量,得到如下数据:
(1)根据表中数据的规律,完成以下表格(填括号),并直接写出关于的函数解析式;
单层部分的长度(cm) | … | 4 | 6 | 8 | 10 | … | 150 |
双层部分的长度(cm) | … | 73 | 72 | 71 | ( ) | … | ( ) |
(2)根据小敏的身高和习惯,挎带的长度为120cm时,背起来正合适,请求出此时单层部分的长度;
(3)设挎带的长度为cm,求的取值范围.