题目内容
【题目】如图,已知AB是⊙O的直径,直线l与⊙O相切于点C且,弦CD交AB于E,BF⊥l,垂足为F,BF交⊙O于G.
(1)求证:CE2=FGFB;
(2)若tan∠CBF=,AE=3,求⊙O的直径.
【答案】(1)见解析;(2)15.
【解析】
(1)由切割线定理知:CF2=FGFB,欲证本题的结论,需先证得CE=CF;可通过证△BCE≌△BCF得出;
(2)欲求⊙O的直径,已知AE的长,关键是求出BE的长度;在Rt△ABC中,CE⊥AB,根据射影定理得到CE2=AEEB,由此可求出BE的长.
(1)连接AC,
∵AB为直径,
∴∠ACB=90°,
∵,且AB是直径,
∴AB⊥CD,
即CE是Rt△ABC的高,
∴∠A=∠ECB,∠ACE=∠EBC,
∵CF是⊙O的切线,
∴∠FCB=∠A,CF2=FGFB,
∴∠FCB=∠ECB,
∵∠BFC=∠CEB=90°,CB=CB,
∴△BCF≌△BCE,
∴CE=CF,∠FBC=∠CBE,
∴CE2=FGFB;
(2)∵∠CBF=∠CBE,∠CBE=∠ACE,
∴∠ACE=∠CBF;
∴tan∠CBF=tan∠ACE=,
∵AE=3,
∴,
∴CE=6,
在Rt△ABC中,CE是高,
∴CE2=AEEB,即62=3EB,
∴EB=12,
∴⊙O的直径为:12+3=15.
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台,先将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区.两地区与该农机租赁公司商定的每天的租赁价格见表:
每台甲型收割机的租金 | 每台乙型收割机的租金 | |
A地区 | 1800 | 1600 |
B地区 | 1600 | 1200 |
(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求y与x间的函数关系式,并写出x的取值范围;
(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79 600元,说明有多少种分配方案,并将各种方案设计出来;
(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提一条合理化建议.