题目内容
【题目】如图,点A(1﹣,1+)在双曲线y=(x<0)上.
(1)求k的值;
(2)在y轴上取点B(0,1),为双曲线上是否存在点D,使得以AB,AD为邻边的平行四边形ABCD的顶点C在x轴的负半轴上?若存在,求出点D的坐标;若不存在,请说明理由.
【答案】
(1)
解:∵点A(1﹣,1+)在双曲线y=(x<0)上,
∴k=(1﹣)(1+)=1﹣5=﹣4;
(2)
解:过点A作AE⊥y轴于点E,过点D作DF⊥x轴于点F,
∵四边形ABCD是以AB,AD为邻边的平行四边形ABCD,
∴DCAB,
∵A(1﹣,1+),B(0,1),
∴BE=,
由题意可得:DF=BE=,
则=,
解得:x=,
∴点D的坐标为:(﹣,).
【解析】(1)直接利用反比例函数图象上点的坐标性质代入求出即可;
(2)根据平行四边形的性质得出D点纵坐标,进而代入函数解析式得出D点横坐标即可.
【考点精析】通过灵活运用平行四边形的性质,掌握平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分即可以解答此题.
练习册系列答案
相关题目