题目内容
【题目】(1)如图1,O是等边△ABC内一点,连接OA、OB、OC,且OA=3,OB=4,OC=5,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.求:
①旋转角的度数;
②线段OD的长;
③∠BDC的度数.
(2)如图2所示,O是等腰直角△ABC(∠ABC=90°)内一点,连接OA、OB、OC,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.当OA、OB、OC满足什么条件时,∠ODC=90°?请给出证明.
【答案】(1)①60°;②4;③150°;(2)OA2+2OB2=OC2时,∠ODC=90°,理由详见解析.
【解析】
(1)①△ABO旋转后AB与BC重合,根据旋转的性质可知∠ABC是旋转角,由△ABC是等边三角形即可知答案.②由旋转的性质可知OB=BD,根据旋转角是60°可知∠OBD=60°即可证明△BOD是等边三角形,进而求出OD的长.③根据OD=4,OC=5,CD=3可证明△OCD是直角三角形,根据△BOD是等边三角形即可求出∠BDC得度数.(2)根据旋转的性质可知旋转角为90°,可证明三角形BOD是等腰直角三角形,进而求出OD= OB,根据△OCD是直角三角形即可知答案.
(1)①∵△ABC为等边三角形,
∴BA=BC,∠ABC=60°,
∵△BAO绕点B顺时针旋转后得到△BCD,
∴∠OBD=∠ABC=60°,
∴旋转角的度数为60°;
②∵△BAO绕点B顺时针旋转后得到△BCD,
∴BO=BD,
而∠OBD=60°,
∴△OBD为等边三角形;
∴OD=OB=4;
③∵△BOD为等边三角形,
∴∠BDO=60°,
∵△BAO绕点B顺时针旋转后得到△BCD,
∴CD=AO=3,
在△OCD中,CD=3,OD=4,OC=5,
∵32+42=52,
∴CD2+OD2=OC2,
∴△OCD为直角三角形,∠ODC=90°,
∴∠BDC=∠BDO+∠ODC=60°+90°=150°;
(2)OA2+2OB2=OC2时,∠ODC=90°.理由如下:
∵△BAO绕点B顺时针旋转后得到△BCD,
∴∠OBD=∠ABC=90°,BO=BD,CD=AO,
∴△OBD为等腰直角三角形,
∴OD=OB,
∵当CD2+OD2=OC2时,△OCD为直角三角形,∠ODC=90°,
∴OA2+2OB2=OC2,
∴当OA、OB、OC满足OA2+2OB2=OC2时,∠ODC=90°.