题目内容

【题目】如图1,在△ABC中,∠ACB90°,BC2,∠A30°,点EF分别是线段BCAC的中点,连结EF

1)线段BEAF的位置关系是      

2)如图2,当△CEF绕点C顺时针旋转a时(0°<a180°),连结AFBE,(1)中的结论是否仍然成立.如果成立,请证明;如果不成立,请说明理由.

3)如图3,当△CEF绕点C顺时针旋转a时(0°<a180°),延长FCAB于点D,如果AD62,求旋转角a的度数.

【答案】(1)互相垂直;(2)结论仍然成立(3)135°

【解析】

试题(1)结合已知角度以及利用锐角三角函数关系求出AB的长,进而得出答案;
(2)利用已知得出△BEC∽△AFC,进而得出∠1=∠2,即可得出答案;
(3)过点DDH⊥BCH,则DB=4-(6-2)=2-2,进而得出BH=-1,DH=3-,求出CH=BH,得出∠DCA=45°,进而得出答案.

试题解析:(1)如图1,线段BE与AF的位置关系是互相垂直;
∵∠ACB=90°,BC=2,∠A=30°,
∴AC=2
∵点E,F分别是线段BC,AC的中点,
=

(2))如图2,∵点E,F分别是线段BC,AC的中点,


∴EC=BC,FC=AC,

∵∠BCE=∠ACF=α,
∴△BEC∽△AFC,

∴∠1=∠2,
延长BE交AC于点O,交AF于点M
∵∠BOC=∠AOM,∠1=∠2
∴∠BCO=∠AMO=90°
∴BE⊥AF;

(3)如图3,

∵∠ACB=90°,BC=2,∠A=30°∴AB=4,∠B=60°

过点DDHBCHDB=4-(6-2)=2-2,

BH=-1,DH=3-,又∵CH=2-(-1)=3-

CH=BH,∴∠HCD=45°,∴∠DCA=45°,α=180°-45°=135°.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网