题目内容
【题目】如图,△ABC中,AB=AC,AD是BC边上的高.点O是AC中点,延长DO到E,使OE=OD,连接AE,CE.
(1)求证:四边形ADCE是矩形;
(2)若BC=6,∠DOC=60°,求四边形ADCE的面积.
【答案】(1)证明见解析;(2)
【解析】
(1)根据平行四边形的性质得出四边形ADCE是平行四边形,根据垂直推出∠ADC=90°,根据矩形的判定得出即可;
(2)依据等腰三角形三线合一的性质可求得DC,然后证明△OCD为等边三角形,从而可求得AC的长,然后依据勾股定理可求得AD的长,最后利用矩形的面积公式求出即可.
(1)证明:∵点O是AC中点,
∴OA=OC,
又∵OE=OD,
∴四边形ADCE是平行四边形.
∵AD是BC边上的高,
∴∠ADC=90°,
∴四边形ADCE的是矩形.
(2)解:∵AD是等腰三角形BC边上的高,BC=6,
∴BD=DC=3
∵四边形ADCE的是矩形,
∴OD=OC=AC.
∵∠DOC=60°,
∴△DOC是等边三角形,
∴OC=DC=3,
∴AC=6.
在Rt△ADC中,∠ADC=90°,DC=3,AC=6,
由勾股定理得 AD=,
∴四边形ADCE的面积S=AD×DC=3×=.
练习册系列答案
相关题目