题目内容
已知:⊙O的直径为10cm,弦AB∥CD,且AB=6cm,CD=8cm,则AB与CD的距离
7cm或1cm
7cm或1cm
.
分析:分两种情况考虑:当两条弦位于圆心O一侧时,如图1所示,过O作OE⊥CD,交CD于点E,交AB于点F,连接OA,OC,由AB∥CD,得到OE⊥AB,利用垂径定理得到E与F分别为CD与AB的中点,在直角三角形AOF中,利用勾股定理求出OF的长,在三角形COE中,利用勾股定理求出OE的长,由OE-OF即可求出EF的长;当两条弦位于圆心O两侧时,如图2所示,同理由OE+OF求出EF的长即可.
解答:
解:分两种情况考虑:
当两条弦位于圆心O一侧时,如图1所示,
过O作OE⊥CD,交CD于点E,交AB于点F,连接OA,OC,
∵AB∥CD,∴OE⊥AB,
∴E、F分别为CD、AB的中点,
∴CE=DE=
CD=4cm,AF=BF=
AB=3cm,
在Rt△AOF中,OA=5cm,AF=4cm,
根据勾股定理得:OF=3cm,
在Rt△COE中,OC=5cm,CE=3cm,
根据勾股定理得:OE═4cm,
则EF=OE-OF=4-3=1cm;
当两条弦位于圆心O两侧时,如图2所示,同理可得EF=4+3=7cm,
综上,弦AB与CD的距离为7cm或1cm.
故答案为:7cm或1cm.
点评:此题考查了垂径定理,勾股定理,利用了分类讨论的思想,熟练掌握垂径定理是解本题的关键.
练习册系列答案
相关题目