题目内容
【题目】如图1,已知开口向下的抛物线y1=ax2﹣2ax+1过点A(m,1),与y轴交于点C,顶点为B,将抛物线y1绕点C旋转180°后得到抛物线y2,点A,B的对应点分别为点D,E.
(1)直接写出点A,C,D的坐标;
(2)当四边形ABCD是矩形时,求a的值及抛物线y2的解析式;
(3)在(2)的条件下,连接DC,线段DC上的动点P从点D出发,以每秒1个单位长度的速度运动到点C停止,在点P运动的过程中,过点P作直线l⊥x轴,将矩形ABDE沿直线l折叠,设矩形折叠后相互重合部分面积为S平方单位,点P的运动时间为t秒,求S与t的函数关系.
【答案】(1)A(2,1)、C(0,1)、D(﹣2,1);(2)a=﹣,y2=x2+2x+1;(3)S=t2(0≤t≤1)或S=﹣(1<t≤2).
【解析】
试题分析:(1)直接将点A的坐标代入y1=ax2﹣2ax+1得出m的值,因为由图象可知点A在第一象限,所以m≠0,则m=2,写出A,C的坐标,点D与点A关于点C对称,由此写出点D的坐标;
(2)根据顶点坐标公式得出抛物线y1的顶点B的坐标,再由矩形对角线相等且平分得:BC=CD,在直角△BMC中,由勾股定理列方程求出a的值得出抛物线y1的解析式,由旋转的性质得出抛物线y2的解析式;
(3)分两种情况讨论:①当0≤t≤1时,S=S△GHD=S△PDH+S△PDG,作辅助线构建直角三角形,求出PG和PH,利用面积公式计算;②当1<t≤2时,S=S直角三角形+S矩形﹣S不重合,这里不重合的图形就是△GE′F,利用30°角和60°角的直角三角形的性质进行计算得出结论.
试题解析:(1)由题意得:
将A(m,1)代入y1=ax2﹣2ax+1得:am2﹣2am+1=1,
解得:m1=2,m2=0(舍),
∴A(2,1)、C(0,1)、D(﹣2,1);
(2)如图1,由(1)知:B(1,1﹣a),过点B作BM⊥y轴,
若四边形ABDE为矩形,则BC=CD,
∴BM2+CM2=BC2=CD2,
∴12+(﹣a)2=22,
∴a=,
∵y1抛物线开口向下,
∴a=﹣,
∵y2由y1绕点C旋转180°得到,则顶点E(﹣1,1﹣),
∴设y2=a(x+1)2+1﹣,则a=,
∴y2=x2+2x+1;
(3)如图1,当0≤t≤1时,则DP=t,构建直角△BQD,
得BQ=,DQ=3,则BD=2,
∴∠BDQ=30°,
∴PH=,PG=t,
∴S=(PE+PF)×DP=t2,
如图2,当1<t≤2时,EG=E′G=(t﹣1),E′F=2(t﹣1),
S不重合=(t﹣1)2,
S=S1+S2﹣S不重合=+(t﹣1)﹣(t﹣1)2,
=﹣;
综上所述:S=t2(0≤t≤1)或S=﹣(1<t≤2).