题目内容
【题目】如图,在平面直角坐标系中,点O为坐标原点,点在第一象限,过点A向x轴作垂线,垂足为点B,连接OA,,点M从O出发,沿y轴的正半轴以每秒2个单位长度的速度运动,点N从点B出发以每秒3个单位长度的速度向x轴负方向运动,点M与点N同时出发,设点M的运动时间为t秒,连接AM,AN,MN.
求a的值;
当时,
请探究,,之间的数量关系,并说明理由;
试判断四边形AMON的面积是否变化?若不变化,请求出其值;若变化,请说明理由.
当时,请求出t的值.
【答案】(1)a=2(2)①∠ANM=∠OMN+∠BAN②详见解析(3)t=或6
【解析】
(2)当0<t<2时①∠ANM=∠OMN+∠BAN.如图2中,过N点作NH∥AB,利用平行的性质证明即可.②根据S四边形AMON =S四边形ABOM-S三角形ABN,计算即可;
(3)分两种情形列出方程即可解决问题;
∵S三角形AOB=12,A(3a,2a),
∴×3a×2a=12,
∴=4,
又∵a>0,
∴a=2.
(2)当0<t<2时,
①∠ANM=∠OMN+∠BAN,
如图2中,过N点作NH∥AB,
∵AB⊥X轴,
∴AB∥OM,
∴AB∥NH∥OM,
∴∠OMN=∠MNH,
∠BAN=∠ANH,
∴∠ANM=∠MNH+∠ANH,
=∠OMN+∠BAN.
②S四边形AMON 不变化,
理由:∵a=2,
∴A(6,4),
∴OB=6,AB=4,OM=2t BN=3t,
ON=6-3t,
∴S四边形AMON =S四边形ABOM-S三角形ABN,
=(AB+OM)×OB-×BN×AB
=(4+2t)×6-×3t×4
=12+6t-6t
=12
∴四边形AMON的面积不变,
(3)t=或6.
【题目】去学校食堂就餐,经常会在一个买菜窗口前等待,经调查发现,同学的舒适度指数y与等时间x(分)之间满足反比例函数关系,如下表:
等待时间x | 1 | 2 | 5 | 10 | 20 |
舒适度指数y | 100 | 50 | 20 | 10 | 5 |
已知学生等待时间不超过30分钟
(1)求y与x的函数关系式,并写出自变量x的取值范围.
(2)若等待时间8分钟时,求舒适度的值;
(3)舒适度指数不低于10时,同学才会感到舒适.请说明,作为食堂的管理员,让每个在窗口买菜的同学最多等待多少时间?