题目内容

【题目】如图1,在△ABC和△ADE中,∠BAC=∠EADABACADAE,连接CDAE交于点F

1)求证:BECD

2)当∠BAC=∠EAD30°,ADAB时(如图2),延长DCAB交于点G,请直接写出图中除△ABC、△ADE以外的等腰三角形.

【答案】1)见解析;(2)△ACF是等腰三角形,△ADG是等腰三角形,△DEF是等腰三角形,△ECD是等腰三角形.

【解析】

1)由“SAS”可证△ACD≌△ABE,可得BECD

2)如图2,图形中有四个等腰三角形:分别是①△ACF是等腰三角形,②△ADG是等腰三角形,③△DEF是等腰三角形;④△ECD是等腰三角形;根据已知角的度数依次计算各角的度数,根据两个角相等的三角形是等腰三角形得出结论.

解:(1)如图1,∵∠BAC=∠EAD

∴∠BAC+CAE=∠EAD+CAE

即∠BAE=∠CAD,且ABACADAE

∴△ACD≌△ABESAS

BECD

2)如图2

①∵∠BAC=∠EAD30°,

∴∠ABC=∠ACB=∠AED=∠ADE75°,

由(1)得:∠ACD=∠ABC75°,

DCE=∠BAC30°,

ADAB

∴∠BAD90°,

∴∠CAE30°,

∴∠AFC180°﹣30°﹣75°=75°,

∴∠ACF=∠AFC

∴△ACF是等腰三角形,

②∵∠BCG=∠DCE30°,∠ABC75°,

∴∠G45°,

RtAGD中,∠ADG45°,

∴△ADG是等腰三角形,

③∠EDF75°﹣45°=30°,

∴∠DEF=∠DFE75°,

∴△DEF是等腰三角形;

④∵∠ECD=∠EDC30°,

∴△ECD是等腰三角形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网