题目内容
【题目】如图,Rt△ABC中,,,,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿AB向B点运动,设E点的运动时间为t秒,连接DE,当以B、D、E为顶点的三角形与△ABC相似时,t的值为( )
A.2或3.5B.2或3.2C.2或3.4D.3.2或3.4
【答案】A
【解析】
求出AB=2BC=4cm,分两种情况:①当∠EDB=∠ACB=90°时,DE∥AC,△EBD∽△ABC,得出AE=BE= AB=2cm,即可得出t=2s;②当∠DEB=∠ACB=90°时,证出△DBE∽△ABC,得出∠BDE=∠A=30°,因此BE=BD=cm,得出AE=3.5cm,t=3.5s;即可得出结果.
解:∵∠ACB=90°,∠ABC=60°,
∴∠A=30°,
∴AB=2BC=4cm,
分两种情况:
①当∠EDB=∠ACB=90°时,
DE∥AC,所以△EBD∽△ABC,
E为AB的中点,AE=BE=AB=2cm,
∴t=2s;
②当∠DEB=∠ACB=90°时,
∵∠B=∠B,
∴△DBE∽△ABC,
∴∠BDE=∠A=30°,
∵D为BC的中点,
∴BD=BC=1cm,
∴BE=BD=0.5cm,
∴AE=3.5cm,
∴t=3.5s;
综上所述,当以B、D、E为顶点的三角形与△ABC相似时,t的值为2或3.5,
故选:A.
练习册系列答案
相关题目