题目内容

【题目】如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE,已知∠ABC=60°,EF⊥AB,垂足为F,连接DF.
(1)求证:△ABC≌△EAF;
(2)试判断四边形EFDA的形状,并证明你的结论.

【答案】
(1)证明:∵△ABE是等边三角形,EF⊥AB,

∴∠EAF=60°,AE=BE,∠EFA=90°.

又∵∠ACB=90°,∠ABC=60°,

∴∠EFA=∠ACB,∠EAF=∠ABC.

在△ABC和△EAF中

∴△ABC≌△EAF


(2)解:结论:四边形EFDA是平行四边形.

理由:∵△ABC≌△EAF,

∴EF=AC.

∵△ACD是的等边三角形,

∴AC=AD,∠CAD=60°,

∴AD=EF.

又∵Rt△ABC中,∠ABC=60°,∠BAC=30°,

∴∠BAD=∠BAC+∠CAD=90°,

∴∠EFA=∠BAD=90°,

∴EF∥AD.

又∵EF=AD,

∴四边形EFDA是平行四边形


【解析】(1)由△ABE是等边三角形可知:AE=BE,∠EAF=60°,于是可得到∠EFA=∠ACB,∠EAF=∠ABC,接下来依据AAS证明△ABC≌△EAF即可;(2)由△ABC≌△EAF可得到EF=AC,由△ACD是的等边三角形进而可证明AC=AD,然互再证明∠BAD=90°,可证明EF∥AD,故此可得到四边形EFDA为平行四边形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网