题目内容
如图,以正方形ABCD的边BC为直径作半圆O,过点D作直线切半圆于点F,交AB于点E,则△DAE与直角梯形EBCD的周长的比值为
- A.
- B.
- C.
- D.
D
分析:EF=x,DF=y,在△ADE中根据勾股定理可得列方程,从而得到三角形ADE的周长和直角梯形EBCD周长,从而可求得两者周长之比.
解答:根据切线长定理得,BE=EF,DF=DC=AD=AB=BC.
设EF=x,DF=y,
∵(y-x)2+y2=(x+y)2,
∴y=4x,
∴三角形ADE的周长为12x,直角梯形EBCD周长为14x,
∴两者周长之比为12x:14x=6:7.
故选D.
点评:此题考查圆的切线长定理,正方形的性质和勾股定理等知识,解答本题关键是运用切线长定理得出EB=EF,DF=DC,从而求解.
分析:EF=x,DF=y,在△ADE中根据勾股定理可得列方程,从而得到三角形ADE的周长和直角梯形EBCD周长,从而可求得两者周长之比.
解答:根据切线长定理得,BE=EF,DF=DC=AD=AB=BC.
设EF=x,DF=y,
∵(y-x)2+y2=(x+y)2,
∴y=4x,
∴三角形ADE的周长为12x,直角梯形EBCD周长为14x,
∴两者周长之比为12x:14x=6:7.
故选D.
点评:此题考查圆的切线长定理,正方形的性质和勾股定理等知识,解答本题关键是运用切线长定理得出EB=EF,DF=DC,从而求解.
练习册系列答案
相关题目