题目内容
(2012•闸北区一模)已知:如图1,在Rt△OAC中,AO⊥OC,点B在OC边上,OB=6,BC=12,∠ABO+∠C=90°.动点M和N分别在线段AB和AC边上.
(l)求证△AOB∽△COA,并求cosC的值;
(2)当AM=4时,△AMN与△ABC相似,求△AMN与△ABC的面积之比;
(3)如图2,当MN∥BC时,将△AMN沿MN折叠,点A落在四边形BCNM所在平面的点为点E.设MN=x,△EMN与四边形BCNM重叠部分的面积为y,试写出y关于x的函数关系式,并写出自变量x的取值范围.
(l)求证△AOB∽△COA,并求cosC的值;
(2)当AM=4时,△AMN与△ABC相似,求△AMN与△ABC的面积之比;
(3)如图2,当MN∥BC时,将△AMN沿MN折叠,点A落在四边形BCNM所在平面的点为点E.设MN=x,△EMN与四边形BCNM重叠部分的面积为y,试写出y关于x的函数关系式,并写出自变量x的取值范围.
分析:(1)根据相似三角形的判定得出△AOB∽△COA,进而得出AO的长,即可求出cosC的值;
(2)利用(1)中所求得出AB=BC=12,再利用①∠AMN=∠B时,(如图1)△AMN∽△ABC,②当∠AMN=∠C时,(如图2)△AMN∽△ACB分别求出即可;
(3)首先得出△AMN∽△ABC,①当EN与线段AB相交时,设EN与AB交于点F(如图3),②当EN与线段AB不相交时,设EN于BC交于点G(如图4),分别求出即可.
(2)利用(1)中所求得出AB=BC=12,再利用①∠AMN=∠B时,(如图1)△AMN∽△ABC,②当∠AMN=∠C时,(如图2)△AMN∽△ACB分别求出即可;
(3)首先得出△AMN∽△ABC,①当EN与线段AB相交时,设EN与AB交于点F(如图3),②当EN与线段AB不相交时,设EN于BC交于点G(如图4),分别求出即可.
解答:解:(1)∵AO⊥OC,
∴∠ABO+∠BAO=90°.
∵∠ABO+∠C=90°,
∴∠BAO=∠C.
∵∠ABO=∠COA,
∴△AOB∽△COA.
∵OB=6,BC=12,
∴6:OA=OA:18.
∴OA=6
.
∴AC=
=
=12
.
∴cosC=
=
=
.
(2)∵cosC=
=
=
,
∴∠C=30°.
∵tan∠ABO=
=
=
,
∴∠ABO=60°,
∴∠BAC=30°.
∴AB=BC=12.
①∠AMN=∠B时,(如图1)△AMN∽△ABC.
∵AM=4,
∴S△AMN:S△ABC=AM2:AB2=42:122 =1:9.
②当∠AMN=∠C时,(如图2)△AMN∽△ACB.
∵AM=4,
∴S△AMN:S△ABC=AM2:AC2=42:(12
)2 =1:27.
(3)可以求得:S△ABC=
AO•BC=
×6
×12=36
.
∵MN∥BC,
∴△AMN∽△ABC.
∴S△AMN:S△ABC=MN2:BC2.
∴S△AMN:36
=x2:122.
∴S△AMN=
x2.
①当EN与线段AB相交时,设EN与AB交于点F(如图3),
∵MN∥BC,
∴∠ANM=∠C=30°.
∴∠ANM=∠BAC.
∴AM=MN=x.
∵将△AMN沿MN折叠,
∴∠ENM=∠ANM=30°.
∴∠AFN=90°.
∴MF=
MN=
AM=
x.
∴S△FMN:S△AMN=MF:AM.
∴y:
x2=
x:x=1:2.
∴y=
x2(0<x≤8).
②当EN与线段AB不相交时,设EN于BC交于点G(如图4),
∵MN∥BC
∴CN:AC=BM:AB.
∴CN:12
=(12-x):12.
∴CN=12
-
x.
∵△CNG∽△CBA,
∴S△CNG:S△ABC=CN2:BC2.
∴S△CNG:36
=(12
-
x)2:122.
∴S△CNG=
(12
-
x)2.
∴S阴=S△ABC-S△AMN -S△CNG=36
-
x2 -
(12
-
x) 2.
即y=-
x2+18
x-72
(8<x<12).
说明:①当EN与线段AB相交时,用计算MN边上高的方法求y时,求出高为
x,得1分;
当EN与线段AB不相交时,用梯形面积公式求y时,求出梯形上底为(3x-24),得1分.
②定义域错一个,不扣分;两个全错,扣1分.
∴∠ABO+∠BAO=90°.
∵∠ABO+∠C=90°,
∴∠BAO=∠C.
∵∠ABO=∠COA,
∴△AOB∽△COA.
∵OB=6,BC=12,
∴6:OA=OA:18.
∴OA=6
3 |
∴AC=
OC2+OA2 |
182+(6
|
3 |
∴cosC=
OC |
AC |
18 | ||
12
|
1 |
2 |
3 |
(2)∵cosC=
OC |
AC |
18 | ||
12
|
1 |
2 |
3 |
∴∠C=30°.
∵tan∠ABO=
OA |
OB |
6
| ||
6 |
3 |
∴∠ABO=60°,
∴∠BAC=30°.
∴AB=BC=12.
①∠AMN=∠B时,(如图1)△AMN∽△ABC.
∵AM=4,
∴S△AMN:S△ABC=AM2:AB2=42:122 =1:9.
②当∠AMN=∠C时,(如图2)△AMN∽△ACB.
∵AM=4,
∴S△AMN:S△ABC=AM2:AC2=42:(12
3 |
(3)可以求得:S△ABC=
1 |
2 |
1 |
2 |
3 |
3 |
∵MN∥BC,
∴△AMN∽△ABC.
∴S△AMN:S△ABC=MN2:BC2.
∴S△AMN:36
3 |
∴S△AMN=
1 |
4 |
3 |
①当EN与线段AB相交时,设EN与AB交于点F(如图3),
∵MN∥BC,
∴∠ANM=∠C=30°.
∴∠ANM=∠BAC.
∴AM=MN=x.
∵将△AMN沿MN折叠,
∴∠ENM=∠ANM=30°.
∴∠AFN=90°.
∴MF=
1 |
2 |
1 |
2 |
1 |
2 |
∴S△FMN:S△AMN=MF:AM.
∴y:
1 |
4 |
3 |
1 |
2 |
∴y=
1 |
8 |
3 |
②当EN与线段AB不相交时,设EN于BC交于点G(如图4),
∵MN∥BC
∴CN:AC=BM:AB.
∴CN:12
3 |
∴CN=12
3 |
3 |
∵△CNG∽△CBA,
∴S△CNG:S△ABC=CN2:BC2.
∴S△CNG:36
3 |
3 |
3 |
∴S△CNG=
1 |
4 |
3 |
3 |
3 |
∴S阴=S△ABC-S△AMN -S△CNG=36
3 |
1 |
4 |
3 |
1 |
4 |
3 |
3 |
3 |
即y=-
3 |
3 |
3 |
说明:①当EN与线段AB相交时,用计算MN边上高的方法求y时,求出高为
1 |
4 |
3 |
当EN与线段AB不相交时,用梯形面积公式求y时,求出梯形上底为(3x-24),得1分.
②定义域错一个,不扣分;两个全错,扣1分.
点评:此题主要考查了相似三角形的判定与性质,根据直线EN与线段AB位置关系进行分类讨论得出是解题关键.
练习册系列答案
相关题目