题目内容
【题目】如图,相交两圆的公共弦AB长为120cm,它分别是一圆内接正六边形的边和另一圆内接正方形的边,求两圆相交弧间的阴影部分的面积.
【答案】4200π﹣3600﹣3600
【解析】试题分析:
如图,连接O1O2 , O1A,O1B,O2A,O2B,则可得O1O2垂直平分AB,由题意可得AC=BC=60,∠AO1B=60°,∠AO2B=90°,由此可得△AO1B是等边三角形,△AO2B是等腰直角三角形,再由S阴影=S扇形AO1B+S扇形AO2B-S△AO1B -S△AO2B,即可求得所求面积.
试题解析:
如图,连接O1O2 , O1A,O1B,O2A,O2B;
则O1O2垂直平分AB,
∵AB=120,
∴AC=BC=60;
由题意得:∠AO1B=,∠AO2B=90°,
又∵O1A=O1B,O2A=O2B,
∴△O1AB,△O2AB分别是等边三角形和等腰直角三角形,
∴O1A=AB=120,O2C=AC=60,O2A=O2C=
∴S扇形AO1B=,S扇形AO2B=,
S△AO1B=,S△AO2B=,
∴S阴影=S扇形AO1B+S扇形AO2B-S△AO1B -S△AO2B
=
=(cm2).
【题目】某公交车每天的支出费用为600元,每天的乘车人数x(人)与每天利润(利润=票款收入﹣支出费用)y(元)的变化关系如下表所示(每位乘客的乘车票价固定不变):
x(人) | … | 200 | 250 | 300 | 350 | 400 | … |
Y(元) | … | ﹣200 | ﹣100 | 0 | 100 | 200 | … |
根据表格中的数据,回答下列问题:
(1)在这个变化关系中,自变量是什么?因变量是什么?
(2)若要不亏本,该公交车每天乘客人数至少达到多少?
(3)请你判断一天乘客人数为500人时,利润是多少?
(4)试写出该公交车每天利润y(元)与每天乘车人数x(人)的关系式.