题目内容

【题目】如图,在RtABC中,∠ACB90°,将ABC绕顶点C逆时针旋转得到A'B'CMBC的中点,PA'B'的中点,连接PM.若BC2,∠BAC30°,则线段PM的最大值是(  )

A.4B.3C.2D.1

【答案】B

【解析】

连接PC,根据∠A=30°,BC=2,可知AB的值,根据旋转的性质可知A′B′=AB,进而可知A′P、PB′、PC的知,结合图形和三角形三边关系即可得出PM的取值范围,进而可知P、C、M共线时,PM值最大,即可选出答案.

解:如图连接PC.

在Rt△ABC中,∵∠A=30°,BC=2,

∴AB=4,

根据旋转不变性可知,A′B′=AB=4,

∴A′P=PB′,

∴PC=A′B′=2,

∵CM=BM=1,

又∵PM≤PC+CM,即PM≤3,

∴PM的最大值为3(此时P、C、M共线).

故选:B.

涓€棰樹竴棰樻壘绛旀瑙f瀽澶參浜�
涓嬭浇浣滀笟绮剧伒鐩存帴鏌ョ湅鏁翠功绛旀瑙f瀽
绔嬪嵆涓嬭浇
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网