题目内容
【题目】在平面直角坐标系中,已知抛物线y=x2+bx+c(b,c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,﹣1),C的坐标为(4,3),直角顶点B在第四象限.
(1)如图,若该抛物线过A,B两点,求该抛物线的函数表达式;
(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与AC交于另一点Q.
(i)若点M在直线AC下方,且为平移前(1)中的抛物线上的点,当以M、P、Q三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M的坐标;
(ii)取BC的中点N,连接NP,BQ.试探究是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.
【答案】(1)y=x2+2x﹣1(2)i:M1(4,﹣1),M2(﹣2,﹣7),M3(1+,﹣2+),M4(1﹣,﹣2﹣);ii:
【解析】
试题分析:(1)先求出点B的坐标,然后利用待定系数法求出抛物线的函数表达式;
(2)i)首先求出直线AC的解析式和线段PQ的长度,作为后续计算的基础.
若△MPQ为等腰直角三角形,则可分为以下两种情况:
①当PQ为直角边时:点M到PQ的距离为.此时,将直线AC向右平移4个单位后所得直线(y=x﹣5)与抛物线的交点,即为所求之M点;
②当PQ为斜边时:点M到PQ的距离为.此时,将直线AC向右平移2个单位后所得直线(y=x﹣3)与抛物线的交点,即为所求之M点.
ii)由(i)可知,PQ=为定值,因此当NP+BQ取最小值时,有最大值.
如答图2所示,作点B关于直线AC的对称点B′,由分析可知,当B′、Q、F(AB中点)三点共线时,NP+BQ最小,最小值为线段B′F的长度.
试题解析:(1)∵等腰直角三角形ABC的顶点A的坐标为(0,﹣1),C的坐标为(4,3)
∴点B的坐标为(4,﹣1).
∵抛物线过A(0,﹣1),B(4,﹣1)两点,
∴,解得:b=2,c=﹣1,
∴抛物线的函数表达式为:y=x2+2x﹣1.
(2)方法一:
i)∵A(0,﹣1),C(4,3),
∴直线AC的解析式为:y=x﹣1.
设平移前抛物线的顶点为P0,则由(1)可得P0的坐标为(2,1),且P0在直线AC上.
∵点P在直线AC上滑动,∴可设P的坐标为(m,m﹣1),
则平移后抛物线的函数表达式为:y=(x﹣m)2+m﹣1.
解方程组:,
解得,
∴P(m,m﹣1),Q(m﹣2,m﹣3).
过点P作PE∥x轴,过点Q作QF∥y轴,则
PE=m﹣(m﹣2)=2,QF=(m﹣1)﹣(m﹣3)=2.
∴PQ==AP0.
若以M、P、Q三点为顶点的等腰直角三角形,则可分为以下两种情况:
①当PQ为直角边时:点M到PQ的距离为(即为PQ的长).
由A(0,﹣1),B(4,﹣1),P0(2,1)可知,
△ABP0为等腰直角三角形,且BP0⊥AC,BP0=.
如答图1,过点B作直线l1∥AC,交抛物线y=x2+2x﹣1于点M,则M为符合条件的点.
∴可设直线l1的解析式为:y=x+b1,
∵B(4,﹣1),∴﹣1=4+b1,解得b1=﹣5,
∴直线l1的解析式为:y=x﹣5.
解方程组,得:,
∴M1(4,﹣1),M2(﹣2,﹣7).
②当PQ为斜边时:MP=MQ=2,可求得点M到PQ的距离为.
如答图2,取AB的中点F,则点F的坐标为(2,﹣1).
由A(0,﹣1),F(2,﹣1),P0(2,1)可知:
△AFP0为等腰直角三角形,且点F到直线AC的距离为.
过点F作直线l2∥AC,交抛物线y=x2+2x﹣1于点M,则M为符合条件的点.
∴可设直线l2的解析式为:y=x+b2,
∵F(2,﹣1),∴﹣1=2+b2,解得b2=﹣3,
∴直线l2的解析式为:y=x﹣3.
解方程组,得:,
∴M3(1+,﹣2+),M4(1﹣,﹣2﹣).
综上所述,所有符合条件的点M的坐标为:
M1(4,﹣1),M2(﹣2,﹣7),M3(1+,﹣2+),M4(1﹣,﹣2﹣).
方法二:
∵A(0,1),C(4,3),
∴lAC:y=x﹣1,
∵抛物线顶点P在直线AC上,设P(t,t﹣1),
∴抛物线表达式:,
∴lAC与抛物线的交点Q(t﹣2,t﹣3),
∵一M、P、Q三点为顶点的三角形是等腰直角三角形,P(t,t﹣1),
①当M为直角顶点时,M(t,t﹣3),,
∴t=1±,
∴M1(1+,﹣2),M2(1﹣,﹣2﹣),
②当Q为直角顶点时,点M可视为点P绕点Q顺时针旋转90°而成,
将点Q(t﹣2,t﹣3)平移至原点Q′(0,0),则点P平移后P′(2,2),
将点P′绕原点顺时针旋转90°,则点M′(2,﹣2),
将Q′(0,0)平移至点Q(t﹣2,t﹣3),则点M′平移后即为点M(t,t﹣5),
∴,
∴t1=4,t2=﹣2,
∴M1(4,﹣1),M2(﹣2,﹣7),
③当P为直角顶点时,同理可得M1(4,﹣1),M2(﹣2,﹣7),
综上所述,所有符合条件的点M的坐标为:
M1(4,﹣1),M2(﹣2,﹣7),M3(1+,﹣2+),M4(1﹣,﹣2﹣).
(ii)存在最大值.理由如下:
由(i)知PQ=为定值,则当NP+BQ取最小值时,有最大值.
如答图2,取点B关于AC的对称点B′,易得点B′的坐标为(0,3),BQ=B′Q.
连接QF,FN,QB′,易得FN∥PQ,且FN=PQ,
∴四边形PQFN为平行四边形.
∴NP=FQ.
∴NP+BQ=FQ+B′Q≥FB′=.
∴当B′、Q、F三点共线时,NP+BQ最小,最小值为.
∴的最大值为=.