题目内容
先阅读下面的材料,再因式分解:
要把多项式am+an+bm+bn因式分解,可以先把它的前两项分成一组,并提出a;把它的后两项分成一组,并提出b,从而得至a(m+n)+b(m+n).这时,由于a(m+n)+b(m+n),又有因式(m+n),于是可提公因式(m+n),从而得到(m+n)(a+b).因此有am+an+bm+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b).这种因式分解的方法叫做分组分解法.如果把一个多项式的项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以利用分组分解法来因式分解了.
请用上面材料中提供的方法因式分解:
(1)ab-ac+bc-b2:
(2)m2-mn+mx-nx;
(3)xy2-2xy+2y-4.
要把多项式am+an+bm+bn因式分解,可以先把它的前两项分成一组,并提出a;把它的后两项分成一组,并提出b,从而得至a(m+n)+b(m+n).这时,由于a(m+n)+b(m+n),又有因式(m+n),于是可提公因式(m+n),从而得到(m+n)(a+b).因此有am+an+bm+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b).这种因式分解的方法叫做分组分解法.如果把一个多项式的项分组并提出公因式后,它们的另一个因式正好相同,那么这个多项式就可以利用分组分解法来因式分解了.
请用上面材料中提供的方法因式分解:
(1)ab-ac+bc-b2:
(2)m2-mn+mx-nx;
(3)xy2-2xy+2y-4.
分析:(1)首先将前两项与后两项分组,进而提取公因式,分解因式即可;
(2)首先将前两项与后两项分组,进而提取公因式,分解因式即可;
(3)首先将前两项与后两项分组,进而提取公因式,分解因式即可.
(2)首先将前两项与后两项分组,进而提取公因式,分解因式即可;
(3)首先将前两项与后两项分组,进而提取公因式,分解因式即可.
解答:解:(1)ab-ac+bc-b2=a(b-c)+b(c-b)=(a-b)(b-c);
(2)m2-mn+mx-nx=m(m-n)+x(m-n)=(m-n)(m-x);
(3)xy2-2xy+2y-4
=xy(y-2)+2(y-2)
=(y-2)(xy+2).
(2)m2-mn+mx-nx=m(m-n)+x(m-n)=(m-n)(m-x);
(3)xy2-2xy+2y-4
=xy(y-2)+2(y-2)
=(y-2)(xy+2).
点评:此题主要考查了分组分解法分解因式,正确分组进而提取公因式是解题关键.
练习册系列答案
相关题目
先阅读下面的材料,再解答后面的各题:
现代社会对保密要求越来越高,密码正在成:为人们生活的一部分.有一种密码的明文(真实文)按计算机键盘字母排列分解,其中Q、W、E、…、N、M这26个字母依次对应1,2,3…25,26这26个自然数(见下表):
给出一个变换公式:
将明文转换成密文,如:4?
+17=19,即R变为L.
11?
+8=12,即A变为S.
将密文转换成明文,如:21?3×(21-17)-2=10,即X变为P
13?3×(13-8)-1=14,即D变为F.
(1)按上述方法将明文NET译为密文;
(2)若按上述方法将明文译成的密文为DWN,请找出它的明文.
现代社会对保密要求越来越高,密码正在成:为人们生活的一部分.有一种密码的明文(真实文)按计算机键盘字母排列分解,其中Q、W、E、…、N、M这26个字母依次对应1,2,3…25,26这26个自然数(见下表):
Q | W | E | R | T | Y | U | I | O | P | A | S | D |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
F | G | H | J | K | L | Z | X | C | V | B | N | M |
14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 |
|
将明文转换成密文,如:4?
4+2 |
3 |
11?
11+1 |
3 |
将密文转换成明文,如:21?3×(21-17)-2=10,即X变为P
13?3×(13-8)-1=14,即D变为F.
(1)按上述方法将明文NET译为密文;
(2)若按上述方法将明文译成的密文为DWN,请找出它的明文.