题目内容
【题目】如图,反比例函数y= 的图象与一次函数y=kx+b的图象交于A,B两点,点A的坐标为(2,6),点B的坐标为(n,1).
(1)求反比例函数与一次函数的表达式;
(2)点E为y轴上一个动点,若S△AEB=5,求点E的坐标.
【答案】
(1)解:把点A(2,6)代入y= ,得m=12,
则y= .
把点B(n,1)代入y= ,得n=12,
则点B的坐标为(12,1).
由直线y=kx+b过点A(2,6),点B(12,1)得 ,
解得 ,
则所求一次函数的表达式为y=﹣ x+7.
(2)解:如图,直线AB与y轴的交点为P,设点E的坐标为(0,m),连接AE,BE,
则点P的坐标为(0,7).
∴PE=|m﹣7|.
∵S△AEB=S△BEP﹣S△AEP=5,
∴ ×|m﹣7|×(12﹣2)=5.
∴|m﹣7|=1.
∴m1=6,m2=8.
∴点E的坐标为(0,6)或(0,8).
【解析】(1)把点A的坐标代入y= ,求出反比例函数的解析式,把点B的坐标代入y= ,得出n的值,得出点B的坐标,再把A、B的坐标代入直线y=kx+b,求出k、b的值,从而得出一次函数的解析式;(2)设点E的坐标为(0,m),连接AE,BE,先求出点P的坐标(0,7),得出PE=|m﹣7|,根据S△AEB=S△BEP﹣S△AEP=5,求出m的值,从而得出点E的坐标.
练习册系列答案
相关题目