题目内容

【题目】在Rt△ABC中,∠BAC=90°,过点B的直线MN∥AC,D为BC边上一点,连接AD,作DE⊥AD交MN于点E,连接AE.

(1)如图①,当∠ABC=45°时,求证:AD=DE;

(2)如图②,当∠ABC=30°时,线段AD与DE有何数量关系?并请说明理由;

(3)当∠ABC=α时,请直接写出线段AD与DE的数量关系.(用含α的三角函数表示)

【答案】(1)证明见试题解析;(2)DE=AD;(3)AD=DEtanα.

【解析】

试题分析:(1)过点D作DFBC,交AB于点F,得出BDE=ADF,EBD=AFD,即可得到BDE≌△FDA,从而得到AD=DE;

(2)过点D作DGBC,交AB于点G,进而得出EBD=AGD,证出BDE∽△GDA即可得出答案;

(3)过点D作DGBC,交AB于点G,进而得出EBD=AGD,证出BDE∽△GDA即可得出答案.

试题解析:(1)如图1,过点D作DFBC,交AB于点F,则BDE+FDE=90°,DEAD,∴∠FDE+ADF=90°,∴∠BDE=ADF,∵∠BAC=90°,ABC=45°,∴∠C=45°,MNAC,∴∠EBD=180°﹣C=135°,∵∠BFD=45°,DFBC,∴∠BFD=45°,BD=DF,∴∠AFD=135°,∴∠EBD=AFD,在BDE和FDA中∵∠EBD=AFD,BD=DF,BDF=ADF,∴△BDE≌△FDA(ASA),AD=DE;

(2)DE=AD,理由:

如图2,过点D作DGBC,交AB于点G,则BDE+GDE=90°,DEAD,∴∠GDE+ADG=90°,∴∠BDE=ADG,∵∠BAC=90°,ABC=30°,∴∠C=60°,MNAC,∴∠EBD=180°﹣C=120°,∵∠ABC=30°,DGBC,∴∠BGD=60°,∴∠AGD=120°,∴∠EBD=AGD,∴△BDE∽△GDA,,在RtBDG中,=tan30°=DE=AD;

(3)AD=DEtanα;理由:

如图2,BDE+GDE=90°,DEAD,∴∠GDE+ADG=90°,∴∠BDE=ADG,∵∠EBD=90°+α,AGD=90°+α,∴∠EBD=AGD,∴△EBD∽△AGD,,在RtBDG中,=tanα,则=tanα,AD=DEtanα.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网