题目内容
【题目】如图,O是△ABC的内心,BO的延长线和△ABC的外接圆相交于D,连接DC、DA、OA、OC,四边形OADC为平行四边形。
(1)求证:△BOC≌△CDA
(2)若AB=2,求阴影部分的面积。
【答案】(1)详见解析;(2).
【解析】
试题分析:(1)如图,利用△ABC的内心和同弧所对的圆周角相等可证得∠1=∠3,利用平行线的性质可证∠4=∠6,再根据AAS即可判定△BOC≌△CDA;(2)先判定△ABC是等边三角形,即可得O是△ABC的内心也是外心,所以OA=OB=OC.在Rt△OCE中,CE=1,∠OCE=30,可求得OA=OB=OC=,根据,求出扇形AOB和△AOB的面积即可得求得阴影部分的面积.
试题解析:
解:(1)证明:∵O是△ABC的内心,
∴∠2=∠3,∠5=∠6,
∵∠1=∠2,∴∠1=∠3,
由AD∥CO,AD=CO,∴∠4=∠5,∴∠4=∠6,
∴△BOC≌△CDA(AAS)
由(1)得,BC=AC,∠3=∠4=∠6,
∴∠ABC=∠ACB
∴AB=AC
∴△ABC是等边三角形
∴O是△ABC的内心也是外心
∴OA=OB=OC
设E为BD与AC的交点,BE垂直平分AC.
在Rt△OCE中,CE=AC=AB=1,∠OCE=30,
∴OA=OB=OC=.
∵∠AOC=120,
∴.
练习册系列答案
相关题目