题目内容

如图,抛物线(b,c是常数,且c<0)与轴分别交于点A、B(点A位于点B的左侧),与轴的负半轴交于点C,点A的坐标为(-1,0).

(1)请直接写出点OA的长度;
(2)若常数b,c满足关系式:.求抛物线的解析式.
(3)在(2)的条件下,点P是轴下方抛物线上的动点,连接PB、PC.设△PBC的面积为S.
①求S的取值范围;
②若△PBC的面积S为整数,则这样的△PBC共有多少个(直接写出结果)?
(1)OA=1;(2)抛物线的解析式;(3)①0<S<5;②+c,﹣2c;11.

试题分析:(1)由点A的坐标为(-1,0)可得:OA=1;
(2)根据抛物线过点A (-1,0),得到:b = c+,联立,求出b,c的值即可;
(3)①分两种情况进行讨论:(Ⅰ)当﹣1<x<0时;(Ⅱ)当0<x<4时;
②由0<S<5,S为整数,得出S=1,2,3,4.分两种情况进行讨论:(Ⅰ)当﹣1<x<0时,(Ⅱ)当0<x<4时.
试题解析:(1)OA=1;
(2)∵抛物线过点A (-1,0),
∴b=c+,
,
,
∵c<0,
,
,
∴抛物线的解析式;
(3)①设点P坐标为(x,).
∵点A的坐标为(﹣1,0),点B坐标为(4,0),点C坐标为(0,﹣2),
∴AB=5,OC=2,直线BC的解析式为y=x﹣2.
分两种情况:
(Ⅰ)当﹣1<x<0时,0<S<SACB
∵SACB=AB•OC=5,
∴0<S<5;
(Ⅱ)当0<x<4时,过点P作PG⊥x轴于点G,交CB于点F.
∴点F坐标为(x,x﹣2),
∴PF=PG﹣GF=﹣(x2x﹣2)+(x﹣2)=﹣x2+2x,
∴S=SPFC+SPFB=PF•OB=(﹣x2+2x)×4=﹣x2+4x=﹣(x﹣2)2+4,
∴当x=2时,S最大值=4,
∴0<S≤4.
综上可知0<S<5;
②∵0<S<5,S为整数,
∴S=1,2,3,4.
分两种情况:
(Ⅰ)当﹣1<x<0时,设△PBC中BC边上的高为h.
∵点A的坐标为(﹣1,0),点B坐标为(4,0),点C坐标为(0,﹣2),
∴AC2=1+4=5,BC2=16+4=20,AB2=25,
∴AC2+BC2=AB2,∠ACB=90°,BC边上的高AC=
∵S=BC•h,∴h=
如果S=1,那么h=×1=,此时P点有1个,△PBC有1个;
如果S=2,那么h=×2=,此时P点有1个,△PBC有1个;
如果S=3,那么h=×3=,此时P点有1个,△PBC有1个;
如果S=4,那么h=×4=,此时P点有1个,△PBC有1个;
即当﹣1<x<0时,满足条件的△PBC共有4个;
(Ⅱ)当0<x<4时,S=﹣x2+4x.
如果S=1,那么﹣x2+4x=1,即x2﹣4x+1=0,
∵△=16﹣4=12>0,∴方程有两个不相等的实数根,此时P点有2个,△PBC有2个;
如果S=2,那么﹣x2+4x=2,即x2﹣4x+2=0,
∵△=16﹣8=8>0,∴方程有两个不相等的实数根,此时P点有2个,△PBC有2个;
如果S=3,那么﹣x2+4x=3,即x2﹣4x+3=0,
∵△=16﹣12=4>0,∴方程有两个不相等的实数根,此时P点有2个,△PBC有2个;
如果S=4,那么﹣x2+4x=4,即x2﹣4x+4=0,
∵△=16﹣16=0,∴方程有两个相等的实数根,此时P点有1个,△PBC有1个;
即当0<x<4时,满足条件的△PBC共有7个;
综上可知,满足条件的△PBC共有4+7=11个.
故答案为+c,﹣2c;11.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网